ABSTRACT:
Burn injuries remain a major global health concern, leading to long-term complications, including scarring, infections, and delayed healing. The current study investigates the in vivo efficacy of curcumin-loaded polymeric nanoparticles (CuR-PNPs) for enhancing the healing process in burn wounds. Curcumin, a natural compound with well-documented antioxidant, anti-inflammatory, and antimicrobial properties, was encapsulated in polymeric nanoparticles to improve its bioavailability and therapeutic potential. In vivo studies were conducted on male Wistar albino rats with second-degree burn wounds, comparing the wound healing outcomes of CuR-PNPs gel, plain CuR-gel, and a marketed formulation (Burn Eaz gel). Results demonstrated that CuR-PNPs significantly accelerated wound contraction and reduced epithelization time compared to the other formulations. Furthermore, the CuR-PNPs gel exhibited minimal skin irritation and improved drug retention in the epidermis and dermis, promoting sustained curcumin release at the wound site. These findings suggest that polymeric nanoparticles offer a promising strategy for enhancing the therapeutic efficacy of curcumin in burn wound management.
Cite this article:
Homesh Yadav, Anand Mahalvar. In Vivo Efficacy of Curcumin-Encapsulated Polymeric Nanocarriers Enriched Nanogel for Accelerated Burn Wound Recovery. Research Journal of Pharmacy and Technology. 2025;18(5):2321-8. doi: 10.52711/0974-360X.2025.00332
Cite(Electronic):
Homesh Yadav, Anand Mahalvar. In Vivo Efficacy of Curcumin-Encapsulated Polymeric Nanocarriers Enriched Nanogel for Accelerated Burn Wound Recovery. Research Journal of Pharmacy and Technology. 2025;18(5):2321-8. doi: 10.52711/0974-360X.2025.00332 Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-5-55
REFERENCES:
1. D.K. Ozhathil, S.E. Wolf. Prevention and treatment of burn wound infections: the role of topical antimicrobials. Expert Rev. Anti. Infect. Ther. 2022; 20; 881–896. https://doi.org/10.1080/14787210.2022.2044795.
2. J.B. Lundy, K.K. Chung, J.C. Pamplin, C.R. Ainsworth, J.C. Jeng, B.C. Friedman. Update on Severe Burn Management for the Intensivist. J. Intensive Care Med. 2016; 31: 499–510. https://doi.org/10.1177/0885066615592346.
3. S. Patel, Pragati, S.D. Dwivedi, K. Yadav, J.R. Kanwar, M.R. Singh, D. Singh. Pathogenesis and Molecular Targets in Treatment of Diabetic Wounds, in: Obes. Diabetes, Springer Nature Singapore. 2020: pp. 747–758. https://doi.org/10.1007/978-3-030-53370-0_55.
4. A. Başaran, K. Gürbüz, Ö. Özlü, M. Demir, O. Eroğlu, K. Daş. Electrical burns and complications: Data of a tertiary burn center intensive care unit. Ulus. Travma ve Acil Cerrahi Derg. = Turkish J. Trauma Emerg. Surg. TJTES. 2020; 26: 222–226. https://doi.org/10.14744/tjtes.2019.65780.
5. B.A.J. Pruitt, A.T. McManus, S.H. Kim, C.W. Goodwin. Burn wound infections: current status. World J. Surg. 1998; 22: 135–145. https://doi.org/10.1007/s002689900361.
6. Y. Huang, L. Bai, Y. Yang, Z. Yin, B. Guo. Biodegradable gelatin/silver nanoparticle composite cryogel with excellent antibacterial and antibiofilm activity and hemostasis for Pseudomonas aeruginosa-infected burn wound healing. J. Colloid Interface Sci. 2022; 608; 2278–2289. https://doi.org/https://doi.org/10.1016/j.jcis.2021.10.131.
7. W. Żwierełło, K. Piorun, M. Skórka-Majewicz, A. Maruszewska, J. Antoniewski, I. Gutowska. Burns: Classification, Pathophysiology, and Treatment: A Review. Int. J. Mol. Sci. 2023; 24. https://doi.org/10.3390/ijms24043749.
8. K. Yadav, M. Pradhan, D. Singh, M.R. Singh. Targeting autoimmune disorders through metal nanoformulation in overcoming the fences of conventional treatment approaches, in: N. Rezaei (Ed.), Transl. Autoimmun. Academic Press, 2022: pp. 361–393. https://doi.org/10.1016/b978-0-12-824390-9.00017-7.
9. M.R. Singh, K. Yadav, N.D. Chaurasiya, D. Singh, Immune System and Mechanism of Immunomodulation, in: N.S. Sangwan, M.A. Farag, L.V. Modolo (Eds.), Plants Phytomolecules Immunomodulation Recent Trends Adv., Springer Nature Singapore, Singapore, 2022: pp. 1–31. https://doi.org/10.1007/978-981-16-8117-2_1.
10. K. Yadav, M. Pradhan, D. Singh, M.R. Singh. Macrophage-Associated Disorders: Pathophysiology, Treatment Challenges, and Possible Solutions. Macrophage Target. Deliv. Syst. Springer. 2022.
11. P. Monika, M.N. Chandraprabha, A. Rangarajan, P.V. Waiker, K.N. Chidambara Murthy. Challenges in Healing Wound: Role of Complementary and Alternative Medicine. Front. Nutr. 2021; 8: 791899. https://doi.org/10.3389/fnut.2021.791899.
12. H. Yadav, A. Mahalvar, M. Pradhan, K. Yadav, K. Kumar Sahu, R. Yadav. Exploring the potential of phytochemicals and nanomaterial: a boon to antimicrobial treatment. Med. Drug Discov. 2023; 100151. https://doi.org/https://doi.org/10.1016/j.medidd.2023.100151.
13. K. Yadav, D. Singh, M.R. Singh, M. Pradhan. Nano-constructs targeting the primary cellular energy source of cancer cells for modulating tumor progression. OpenNano. 2022; 8: 100107. https://doi.org/https://doi.org/10.1016/j.onano.2022.100107.
14. M.A. Matica, F.L. Aachmann, A. Tøndervik, H. Sletta, V. Ostafe. Chitosan as a Wound Dressing Starting Material: Antimicrobial Properties and Mode of Action. Int. J. Mol. Sci. 2019; 20: https://doi.org/10.3390/ijms20235889.
15. K. Yadav, D. Singh, M.R. Singh. Novel archetype in psoriasis management bridging molecular dynamics in exploring novel therapies. Eur. J. Pharmacol. 2021; 907: 174254. https://doi.org/10.1016/j.ejphar.2021.174254.
16. B. Pannerselvam, M.K. Dharmalingam Jothinathan, M. Rajenderan, P. Perumal, K. Pudupalayam Thangavelu, H.J. Kim, V. Singh, S.K. Rangarajulu. An in vitro study on the burn wound healing activity of cotton fabrics incorporated with phytosynthesized silver nanoparticles in male Wistar albino rats. Eur. J. Pharm. Sci. 2017; 100: 187–196. https://doi.org/10.1016/j.ejps.2017.01.015.
17. S.S. Hashemi, Z. Saadatjo, R. Mahmoudi, H. Delaviz, H. Bardania, S.S. Rajabi, A. Rafati, M.M. Zarshenas, M.J. Barmak. Preparation and evaluation of polycaprolactone/chitosan/Jaft biocompatible nanofibers as a burn wound dressing. Burns. 2022; 48:1690–1705. https://doi.org/https://doi.org/10.1016/j.burns.2021.12.009.
18. K.K. Sahu, M. Kaurav, P. Bhatt, S. Minz, M. Pradhan, J. Khan, R.K. Sahu, K. Yadav. Utility of nanomaterials in wound management, in: P.R. Solanki, A. Kumar, R. Pratap Singh, J. Singh, K. RB Singh (Eds.). Nanotechnological Asp. Next-Generation Wound Manag., Academic Press. 2024: pp. 101–130. https://doi.org/https://doi.org/10.1016/B978-0-323-99165-0.00006-X.
19. D. Singh, M. Pradhan, M. Nag, M.R. Singh. Vesicular system: Versatile carrier for transdermal delivery of bioactives., Artif. Cells, Nanomedicine. Biotechnol. 2015; 43: 282–290. https://doi.org/10.3109/21691401.2014.883401.
20. M. Agrawal, S. Saraf, M. Pradhan, R.J. Patel, G. Singhvi, Ajazuddin, A. Alexander. Design and optimization of curcumin loaded nano lipid carrier system using Box-Behnken design. Biomed. Pharmacother. 2021; 141: 111919. https://doi.org/10.1016/j.biopha.2021.111919.
21. R. Yadav, M. Pradhan, K. Yadav, A. Mahalvar, H. Yadav. Present scenarios and future prospects of herbal nanomedicine for antifungal therapy. J. Drug Deliv. Sci. Technol. 2022; 74. https://doi.org/10.1016/j.jddst.2022.103430.
22. Z. Zhang, Y. Zhang, W. Li, L. Ma, E. Wang, M. Xing, Y. Zhou, Z. Huan, F. Guo, J. Chang. Curcumin/Fe-SiO2 nano composites with multi-synergistic effects for scar inhibition and hair follicle regeneration during burn wound healing. Appl. Mater. Today. 2021; 23: 101065. https://doi.org/https://doi.org/10.1016/j.apmt.2021.101065.
23. M. Agrawal, M. Pradhan, G. Singhvi, R. Patel, Ajazuddin, A. Alexande. Thermoresponsive in situ gel of curcumin loaded solid lipid nanoparticle: Design, optimization and in vitro characterization. J. Drug Deliv. Sci. Technol. 2022; 71: 103376. https://doi.org/https://doi.org/10.1016/j.jddst.2022.103376.
24. Z. Stanic. Curcumin, a Compound from Natural Sources, a True Scientific Challenge – A Review. Plant Foods Hum. Nutr. 2017; 72; 1–12. https://doi.org/10.1007/s11130-016-0590-1.
25. S. Gunasekaran, R.K. Natarajan, S. Natarajan, R. Rathikha. Structural investigation on curcumin. Asian J. Chem. 2008; 20: 2903–2913.
26. K. Yadav, D. Singh, M.R. Singh, S. Minz, K.K. Sahu, M. Kaurav, M. Pradhan. Dermal nanomedicine: Uncovering the ability of nucleic acid to alleviate autoimmune and other related skin disorders. J. Drug Deliv. Sci. Technol. 2022; 73: 103437. https://doi.org/https://doi.org/10.1016/j.jddst.2022.103437.
27. P. Ganesan, D.K. Choi. Current application of phytocompound-based nanocosmeceuticals for beauty and skin therapy. Int. J. Nanomedicine. 2016; 11: 1987–2007. https://doi.org/10.2147/IJN.S104701.
28. A. Kumari, N. Raina, A. Wahi, K.W. Goh, P. Sharma, R. Nagpal, A. Jain, L.C. Ming, M. Gupta. Wound-Healing Effects of Curcumin and Its Nanoformulations: A Comprehensive Review. Pharmaceutics. 2022; 14.
29. M.R. Singh, K. Pradhan, M. Pradhan, K. Yadav, N.S. Chauhan, S.D. Dwivedi, D. Singh, Chapter 4 - Lipid-based particulate systems for delivery of plant actives and extracts: Extraction, prospective carriers, and safety issues, in: M.R. Singh, D. Singh (Eds.), Phytopharm. Herb. Drugs, Academic Press, 2023: pp. 83–114. https://doi.org/https://doi.org/10.1016/B978-0-323-99125-4.00017-2.
30. D. Singh, M. Pradhan, S. Shrivastava, S.N. Murthy, M.R. Singh, Chapter 11 - Skin autoimmune disorders: lipid biopolymers and colloidal delivery systems for topical delivery, in: A.M.B.T.-N. in G.F. and C. Grumezescu (Ed.), William Andrew Publishing, 2016: pp. 257–296. https://doi.org/https://doi.org/10.1016/B978-0-323-42868-2.00011-5.
31. S.K. Singh, S.D. Dwivedi, K. Yadav, K. Shah, N.S. Chauhan, M. Pradhan, M.R. Singh, D. Singh. Novel Biotherapeutics Targeting Biomolecular and Cellular Approaches in Diabetic Wound Healing. Biomedicines. 2023; 11. https://doi.org/10.3390/biomedicines11020613.
32. K.K. Sahu, M. Pradhan, D. Singh, M.R. Singh, K. Yadav. Non-viral nucleic acid delivery approach: A boon for state-of-the-art gene delivery, J. Drug Deliv. Sci. Technol. 2023; 80: 104152. https://doi.org/10.1016/j.jddst.2023.104152.
33. R. Sheoran, S.L. Khokra, V. Chawla, H. Dureja. Recent Patents, Formulation Techniques, Classification and Characterization of Liposomes. Recent Pat. Nanotechnol. 2019; 13; 17–27. https://doi.org/10.2174/1872210513666181127110413.
34. M. Sharma, G. Malik, D. Gulati, P. Kaushik, S. Arora. Formulation and evaluation of fusidic acid based transferosome for burn wound infection. Mater. Today Proc. 2022. https://doi.org/https://doi.org/10.1016/j.matpr.2022.06.260.
35. M. Pradhan, K. Yadav, D. Singh, M.R. Singh. Topical delivery of fluocinolone acetonide integrated NLCs and salicylic acid enriched gel: A potential and synergistic approach in the management of psoriasis. J. Drug Deliv. Sci. Technol. 2021; 61: 102282. https://doi.org/10.1016/j.jddst.2020.102282.
36. H. Yusuf, N. Wijiani, R.A. Rahmawati, R. Primaharinastiti, M.A.S. Rijal, D. Isadiartuti. Analytical method for the determination of curcumin entrapped in polymeric micellar powder using HPLC. 2021; 32: 867–873. https://doi.org/doi:10.1515/jbcpp-2020-0491.
37. K. Yadav, D. Singh, M.R. Singh. Nanovesicles delivery approach for targeting steroid mediated mechanism of antipsoriatic therapeutics. J. Drug Deliv. Sci. Technol. 2021; 65; 102688. https://doi.org/10.1016/j.jddst.2021.102688.
38. S. Rathee, A. Kamboj. Optimization and development of antidiabetic phytosomes by the Box-Behnken design. J. Liposome Res. 2018; 28: 161–172.
39. K. Yadav, D. Singh, M.R. Singh. Development and characterization of corticosteroid loaded lipid carrier system for psoriasis, Res. J. Pharm. Technol. 2021; 14: 966–970. https://doi.org/10.5958/0974-360X.2021.00172.4.
40. S. Sahu, S.S. Katiyar, V. Kushwah, S. Jain. Active natural oil-based nanoemulsion containing tacrolimus for synergistic antipsoriatic efficacy. Nanomedicine (Lond). 2018; 13: 1985–1998. https://doi.org/10.2217/nnm-2018-0135.
41. A. Ali, A. Ali, M.A. Rahman, M.H. Warsi, M. Yusuf, P. Alam. Development of Nanogel Loaded with Lidocaine for Wound-Healing: Illustration of Improved Drug Deposition and Skin Safety Analysis. Gels (Basel, Switzerland). 2022; 8. https://doi.org/10.3390/gels8080466.
42. P. Kumar, D.K. Sharma, M.S. Ashawat. Development of Phospholipids Vesicular Nanocarrier for Topical Delivery of Tea Tree Oil in Management of Atopic Dermatitis Using BALB/c Mice Model. Eur. J. Lipid Sci. Technol. 2021; 123: 1–12. https://doi.org/10.1002/ejlt.202100002.
43. Y. Mao, X. Chen, B. Xu, Y. Shen, Z. Ye, B. Chaurasiya, L. Liu, Y. Li, X. Xing, D. Chen. Eprinomectin nanoemulgel for transdermal delivery against endoparasites and ectoparasites: preparation, in vitro and in vivo evaluation. Drug Deliv. 2019;26: 1104–1114. https://doi.org/10.1080/10717544.2019.1682720.
44. S. Shetty, J. Jose, L. Kumar, R.N. Charyulu. Novel ethosomal gel of clove oil for the treatment of cutaneous candidiasis. J. Cosmet. Dermatol. 2019; 18: 862–869. https://doi.org/10.1111/jocd.12765.
45. C. Varrica, M. Carvalheiro, C. Faria-Silva, C. Eleutério, G. Sandri, S. Simões. Topical Allopurinol-Loaded Nanostructured Lipid Carriers: A Novel Approach for Wound Healing Management. Bioeng. (Basel, Switzerland). 2021; 8. https://doi.org/10.3390/bioengineering8120192.
46. E.A. Estracanholli, F.S.G. Praça, A.B. Cintra, M.B.R. Pierre, M.G. Lara. Liquid crystalline systems for transdermal delivery of celecoxib: in vitro drug release and skin permeation studies. AAPS PharmSciTech. 2014; 15; 1468–1475. https://doi.org/10.1208/s12249-014-0171-2.
47. A. Oryan, M. Jalili, A. Kamali, B. Nikahval. The concurrent use of probiotic microorganism and collagen hydrogel/scaffold enhances burn wound healing: An in vivo evaluation. Burns. 2018; 44: 1775–1786. https://doi.org/https://doi.org/10.1016/j.burns.2018.05.016.
48. P. Wang, S. Huang, Z. Hu, W. Yang, Y. Lan, J. Zhu, A. Hancharou, R. Guo, B. Tang. In situ formed anti-inflammatory hydrogel loading plasmid DNA encoding VEGF for burn wound healing. Acta Biomater. 2019; 100: 191–201. https://doi.org/https://doi.org/10.1016/j.actbio.2019.10.004.
49. M. Raouf, S. Essa, S. El Achy, M. Essawy, S. Rafik, M. Baddour. Evaluation of Combined Ciprofloxacin and azithromycin free and nano formulations to control biofilm producing Pseudomonas aeruginosa isolated from burn wounds. Indian J. Med. Microbiol. 2021; 39: 81–87. https://doi.org/https://doi.org/10.1016/j.ijmmb.2021.01.004.
50. A. Nikpasand, M.R. Parvizi. Evaluation of the Effect of Titatnium Dioxide Nanoparticles/Gelatin Composite on Infected Skin Wound Healing; An Animal Model Study. Bull. Emerg. Trauma. 2019; 7: 366–372. https://doi.org/10.29252/beat-070405.
51. A. Rai, R. Ferrão, D. Marta, A. Vilaça, M. Lino, T. Rondão, J. Ji, A. Paiva, L. Ferreira. Antimicrobial Peptide-Tether Dressing Able to Enhance Wound Healing by Tissue Contact., ACS Appl. Mater. Interfaces. 2022; 14: 24213–24228. https://doi.org/10.1021/acsami.2c06601.
52. P. Mazonde, S.M.M. Khamanga, R.B. Walker. Design, Optimization, Manufacture and Characterization of Efavirenz-Loaded Flaxseed Oil Nanoemulsions., Pharmaceutics. 2020; 12. https://doi.org/10.3390/pharmaceutics12090797.
53. K. Saini, C. Arora, M. Saini, S. Sharma, D. Chitkara, V. Kakkar. Preclinical safety of tetrahydrocurcumin loaded lipidic nanoparticles incorporated into tacrolimus ointment: In vitro and in vivo evaluation. Food Chem. Toxicol. 2022; 167: 113260. https://doi.org/https://doi.org/10.1016/j.fct.2022.113260.
54. Z. Jiang, L. Li, H. Li, L. Xia, H. Hu, S. Wang, C. Liu, J. Chi, Y. Yang, F. Song, W. Liu, B. Han. Preparation, biocompatibility, and wound healing effects of O-carboxymethyl chitosan nonwoven fabrics in partial-thickness burn model. Carbohydr. Polym. 2022; 280: 119032. https://doi.org/https://doi.org/10.1016/j.carbpol.2021.119032.
55. J.M. Reinke, H. Sorg. Wound repair and regeneration. Eur. Surg. Res. Eur. Chir. Forschung. Rech. Chir. Eur. 2012; 49: 35–43. https://doi.org/10.1159/000339613.