Author(s): Nesterova N. V., Teplov I. S., Bokov D. O., Sergunova E. V., Luferov A. N., Samylina I. A., Averseva I. N

Email(s): nestero-nadezhda@yandex.ru

DOI: 10.52711/0974-360X.2025.00328   

Address: Nesterova N. V.1, Teplov I. S.2, Bokov D. O.2, Sergunova E. V.2, Luferov A. N.2, Samylina I. A.2, Averseva I. N2
1Peoples ' Friendship University, of Russia 117198, Moscow Miklukho-Maklaya str.6.
2Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, 119991, Russian Federation.
*Corresponding Author

Published In:   Volume - 18,      Issue - 5,     Year - 2025


ABSTRACT:
Objective: Considering the growing interest of researchers in a wide range of pharmacological effects characteristic of quince raw materials due to the presence of various groups of biologically active substances (BAS). The object of the study was fruits Cydonia oblonga Mill obtained in the Botanical Garden of Sechenov University, the Botanical Garden of Moscow State University, the Moscow and Krasnodar regions, harvested during the fruiting phase. Materials and methods: The analysis was performed on a GILSON high-performance liquid chromatograph, model 305 (France). Detection was carried out using a GILSON UV/VIS model 151 UV detector at a wavelength of 370 nm. The total content of polyphenols in the studied raw materials was estimated by Folin-Chicalteu spectrophotometry, the quantitative content of hydroxycinnamic acids in quince fruits was determined by spectrophotometry in terms of caffeic acid Results and discussions: The authors studied the composition of polyphenolic compounds and carried out their quantitative assessment, using HPLC analysis, the presence of polyphenolic substances represented by caffeic, gallic, chlorogenic, neochlorogenic, cinnamic acids, as well as catechin, quercetin, floretin and apigenin was established. A quantitative assessment of the total content of polyphenolic substances in fruits was carried out using the Folin-Chicalteu method, during which it was revealed that the content of the polyphenolic complex ranges from 8,775 to 9,221 in fresh raw materials and from 6,799 to 7,676 in dried raw materials. Losses of phenolic compounds during drying range from 16.8 to 22.5%. The total content of hydroxycinnamic acids in terms of caffeic acid was carried out by spectrophotometric analysis. The results obtained showed the content of analyzed substances in the determined raw materials from 2,021 to 2,344 in dried raw materials and from 3,126 to 3,526 in fresh. Conclusion: The analysis makes it possible to identify phenolic derivatives in extracts from quince fruits, which simplifies the standardization of raw materials in the preparation of appropriate regulatory documentation


Cite this article:
Nesterova N. V., Teplov I. S., Bokov D. O., Sergunova E. V., Luferov A. N., Samylina I. A., Averseva I. N. Analysis of the Composition and Quantitative determination of Hydroxycinnamic acids in Quince fruits cultivated in the Russian Federation. Research Journal of Pharmacy and Technology. 2025;18(5):2291-6. doi: 10.52711/0974-360X.2025.00328

Cite(Electronic):
Nesterova N. V., Teplov I. S., Bokov D. O., Sergunova E. V., Luferov A. N., Samylina I. A., Averseva I. N. Analysis of the Composition and Quantitative determination of Hydroxycinnamic acids in Quince fruits cultivated in the Russian Federation. Research Journal of Pharmacy and Technology. 2025;18(5):2291-6. doi: 10.52711/0974-360X.2025.00328   Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-5-51


REFERENCES:
1.    Patel V. Manek RA. Sheth DB. Evaluation of in-vitro Thrombolytic activity of methanolic extract of Prunus avium L. Asian Journal of Research in Pharmaceutical Sciences. 2021; 11(1): 41-4, doi: 10.5958/2231-5659.2021.00007.2
2.    Kiran Garg V. Dhiman A. Evaluation of Antimicrobial Activity of Peel and Fruits of Pyrus communis. Research Journal of Pharmacy and Technology. 2020; 13(1): 293-6, doi: 10.5958/0974-360X.2020.00059.1
3.    Pandey R. Pandey R. Shukla SS. Anti-inflammatory potential of ethanol extract of Rubus ulmifolius (Schott). Research Journal of Pharmacy and Technology. 2013; 6(3):300-3.
4.    Kale AA. Kinetic and Thermodynamic Study of Adsorption Methylene Blue by Nitrated Biomass of Prunus Cerasus. Asian Journal of Research in Chemistry. 2021; 14(4): 242-6, doi: 10.52711/0974-4150.2021.00041
5.    Upyr TV. Lenchyk LV. Komisarenko MA. Navruzzoda GF. Komisarenko AM. Osolodchenko TP. Ponomarenko SV. Study of Phenolic Compounds of Prunus Domestica Presscake and Antimicrobial Activity of Its Extract. Research Journal of Pharmacy and Technology. 2022; 15(1): 375-80, doi: 10.52711/0974-360X.2022.00061
6.    Singh D. Gohil KJ. Rajput RT. Sharma V. Almond (Prunus amygdalus Batsch.): A Latest Review on Pharmacology and Medicinal uses. Research Journal of Pharmacy and Technology. 2022; 15(7): 3301-8, doi: 10.52711/0974-360X.2022.00553
7.    Kumar PR. Vaidhyalingam V. Pharmacognostical and Preliminary Phytochemical Studies on the Aerial Parts of Rubus racemosus (Roxb). Research Journal of Pharmacognosy and Phytochemistry. 2010; 2(5):381-5.
8.    Ahmad S. Mahmood T. Kumar R. Bagga P. Ahsan F. Shamim A. Ansari A. et al A Contrastive Phytopharmacological Analysis of Gala and Fuji Apple. Research Journal of Pharmacy and Technology. 2020; 13(3): 1527-37, doi: 10.5958/0974-360X.2020.00278.4
9.    Thiruvengadam S. Naresh B. Nivedhaa GK. Ivoromauld S. Preparation of Fruit Leather and Fortification with Moringa oleifera. Research Journal of Pharmacy and Technology. 2020; 13(4): 1619-22, doi: 10.5958/0974-360X.2020.00293.0.
10.    Raj A. Vinnarasi J. Venkataraman R. Augustin M. HPTLC Fingerprinting Analysis of Tannin Profile on Canthium coromandelicum and Flueggea leucopyrus willd. Research Journal of Pharmacy and Technology. 2018; 11(12): 5355-8. doi: 10.5958/0974-360X.2018.00975.7
11.    Herrera-Rocha KM. Rocha-Guzmán NE. Gallegos-Infante JA. González-Laredo RF. Larrosa-Pérez M. Moreno-Jiménez MR. Phenolic Acids and Flavonoids in Acetonic Extract from Quince (Cydonia oblonga Mill.): Nutraceuticals with Antioxidant and Anti-Inflammatory Potential. Molecules. 2022; 27(8): 2462, doi: 10.3390/molecules27082462
12.    Nikolaeva TN. Lapshin PV. Zagoskina NV. Method for Determining the Total Content of Phenolic Compounds in Plant Extracts with Folin–Denis Reagent and Folin–Ciocalteu Reagent: Modification and Comparison. Chemistry of plant raw material. 2021; (2):291-9, doi: 10.14258/jcprm.2021028250
13.    Ňorbová M. Vollmannová A. Fedorková S. Musilová J. Lidiková J. The forgotten fruit (Cydonia oblonga Mill.) and its chemical composition: a review. European Food Research and Technology. 2024; 250:2093–102, doi: 10.1007/s00217-024-04543-7
14.    Dalkılıç LK. Investigation of Antioxidant, Antimicrobial and Cytotoxic Activity of Cydonia oblonga Leaf on Breast Cancer (MCF-7) and Liver Cancer (HepG2) Cell Lines. Turkish Journal of Science and Technology. 2024; 19(1): 13-23, doi: 10.55525/tjst.1331063
15.    Al-Zughbi I. Krayem M. Quince fruit Cydonia oblonga Mill nutritional composition, antioxidative properties, health benefits and consumers preferences towards some industrial quince products: A review. Food Chemistry. 2022; 393: 133362, doi: 10.1016/j.foodchem.2022.133362
16.    Lukashov RI. Moiseev DV. Stolyarova VN. Makarenko MN. Pharmacological activity of caffeic acid. Bulletin of Pharmacy. 2012; 57(3): 61-5.
17.    Abed SN. Bibi S. Jan M. Talha M. Islam NU. Zahoor M. Al-Joufi FA. Phytochemical Composition, Antibacterial, Antioxidant and Antidiabetic Potentials of Cydonia oblonga Bark. Molecules. 2022; 27(19):6360, doi: 10.3390/molecules27196360
18.    Najman K. Adrian S. Sadowska A. Świąder K. Hallmann E. Buczak K. Waszkiewicz-Robak B. Szterk A. Changes in Physicochemical and Bioactive Properties of Quince (Cydonia oblonga Mill.) and Its Products. Molecules. 2023; 28(7): 3066. doi: 10.3390/molecules28073066
19.    Ivashev M. N., Chuklin R. E. Effect of oxycinnamic acids on the cerebral circulatory system. Pharmacy and pharmacology. 2013; 1(1): 44-48. doi: 10.19163/2307-9266-2013-1-1-44-48
20.    Altuntas S. Korukluoglu M. Biological activity of optimized phenolic extracts of quince (Cydonia oblonga Miller) parts before and after simulated in vitro gastrointestinal digestion. Food Chemistry. 2024; 437: 137846, doi: 10.1016/j.foodchem.2023.137846
21.    Golafshani MG. Tavakoli H. Hosseini SA. Akbari M. MD and DFT computational simulations of Caffeoylquinic derivatives as a bio-corrosion inhibitor from quince extract with experimental investigation of corrosion protection on mild steel in 1M H2SO4. Journal of Molecular Structure. 2023; 1275: 134701, doi: 10.1016/j.molstruc.2022.134701
22.    Urbanavičiūtė I. Liaudanskas M. Bobinas Č. Šarkinas A. Rezgienė A. Viskelis P. Japanese Quince (Chaenomeles japonica) as a Potential Source of Phenols: Optimization of the Extraction Parameters and Assessment of Antiradical and Antimicrobial Activities. Foods. 2020; 9(8):1132, doi: 10.3390/foods9081132
23.    Rather JA. Yousuf S. Ashraf QS. Mir SA. Makroo HA. Majid D. Barba FJ. Dar BN. Nutritional and bioactive composition, nutraceutical potential, food and packaging applications of Cydonia oblonga and its byproducts: A review. Journal of Food Composition and Analysis. 2023; 115: 105000, doi: 10.1016/j.jfca.2022.105000
24.    Nesterova NV. Matveenko VN. Samylina IA. Kondrashev SV. Bobkova NV. Suleymanova FS. The Detection of Floretin and Floridzin in Eastern Apple Tree Fruits (Malus orientalis Uglitzk. ex Juz.) and Assessment of the Quantitative Content of Phenolic Compounds. Moscow University Chemistry Bulletin. 2021; 76(1): 71-4. doi: 10.3103/S0027131421010107

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available