Author(s): Taufiqi Hidayatullah, Vera Yulina, Citra Feriana Putri, Basri A. Gani

Email(s): taupq.drg@usk.ac.id

DOI: 10.52711/0974-360X.2025.00314   

Address: Taufiqi Hidayatullah1*, Vera Yulina1, Citra Feriana Putri2, Basri A. Gani2
1Department of Pediatric Dentistry, Dentistry Faculty, Universitas Syiah Kuala, Darussalam, Banda Aceh, Aceh, Indonesia.
2Department of Oral Biology, Dentistry Faculty, Universitas Syiah Kuala, Darussalam, Banda Aceh, Aceh, Indonesia.
*Corresponding Author

Published In:   Volume - 18,      Issue - 5,     Year - 2025


ABSTRACT:
According to previous reports, the principal causative agent in the development of dental caries has been Streptococcus mutans (S. mutans). The Ziziphus mauritiana Lam (Z. mauritiana Lam) has been found to possess antibacterial characteristics that effectively prevent the growth and generation of S. mutans biofilms. The research aims to evaluate the potential of Z. mauritiana Lam in inhibiting the growth and biofilm formation of S. mutans ECC isolates. Z. mauritiana Lam extracted by evaporation approach. Assessment of S. mutans growth by spectrophotometry (620nm) and inhibition of S. mutans biofilm formation by spectrophotometry (520nm) visualization of biofilm mass with an electric microscope (200x). At all concentrations, Z. mauritiana Lam had excellent growth inhibition of S. mutans against S. mutans at 24 h incubation times 0.04-0.09 (< 300 CFU/mL) and was able to inhibit the biofilm formation of S. mutans with a strong scale of OD 0.1 at 24hours incubation time and the concentration of 25%, the biofilm mass decreased to a relatively small size, the same as the positive control group (CHX). At 50%, 12.5%, and 6.25%, it was seen that the S. mutans biofilm mass experienced a dominant loss. All ligand compounds from Z. mauritiana Lam can potentially inhibit the function of glucosyltransferase S. mutans. The Z. mauritiana Lam can inhibit S. mutans growth and biofilm formation by degrading the biofilm mass of S. mutans and good binding affinity of the glucosyltransferase gene of S. mutans.


Cite this article:
Taufiqi Hidayatullah, Vera Yulina, Citra Feriana Putri, Basri A. Gani. In-vitro and In-silico Analyses of Ziziphus mauritiana Lam effect on the Virulence properties of Streptococcus mutans. Research Journal of Pharmacy and Technology. 2025;18(5):2189-6. doi: 10.52711/0974-360X.2025.00314

Cite(Electronic):
Taufiqi Hidayatullah, Vera Yulina, Citra Feriana Putri, Basri A. Gani. In-vitro and In-silico Analyses of Ziziphus mauritiana Lam effect on the Virulence properties of Streptococcus mutans. Research Journal of Pharmacy and Technology. 2025;18(5):2189-6. doi: 10.52711/0974-360X.2025.00314   Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-5-37


REFERENCES:
1.    Alden SJD, Magesh K, Aravindhan R, Kumar MS. Evaluation of antibacterial activity of marine brown algae Turbinaria conoides against oral pathogens. Research Journal of Pharmacy and Technology. 2022; 15(5): 2236-39. http://dx.doi.org/10.52711/0974-360X.2022.00371
2.    Khoury ZH, Vila T, Puthran TR, et al. The role of Candida albicans secreted polysaccharides in augmenting Streptococcus mutans adherence and mixed biofilm formation: in vitro and in vivo studies. Frontiers in Microbiology. 2020; 11: 307. https://doi.org/10.3389/fmicb.2020.00307
3.    Kreve S, Dos Reis AC. Bacterial adhesion to biomaterials: What regulates this attachment? A review. Japanese Dental Science Review. 2021;57:85-96. https://doi.org/10.1016/j.jdsr.2021.05.003
4.    Banerjee K, Saha G, Sahoo P, et al. Synthesis and characterization of a lemongrass oil emulsion formulation incorporating alumina nanoparticles for activity against Streptococcus mutans isolated from dental caries. Research Journal of Pharmacy and Technology. 2020; 13(5): 2291-96. http://dx.doi.org/10.5958/0974-360X.2020.00413.8
5.    Syafriza D, Sutadi H, Primasari A, Siregar Y. Spectrophotometric analysis of streptococcus mutans growth and biofilm formation in Saliva and histatin-5 relate to pH and viscosity. Pesquisa Brasileira em Odontopediatria e Clínica Integrada. 2020; 21: e0018. http://dx.doi.org/10.1590/pboci.2021.004
6.    Makabenta JMV, Nabawy A, Li C-H, et al. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nature Reviews Microbiology. 2021; 19(1): 23-36. https://doi.org/10.1038/s41579-020-0420-1
7.    Kalpana B, Prabhu P, Bhat AH, et al. Bacterial diversity and functional analysis of severe early childhood caries and recurrence in India. Scientific reports 2020; 10(1): 21248. https://www.nature.com/articles/s41598-020-78057-z
8.    Ham S-Y, Kim H-S, Cha E, et al. Raffinose inhibits Streptococcus mutans biofilm formation by targeting glucosyltransferase. Microbiology Spectrum. 2022; 10(3): e02076-21. http://dx.doi.org/10.1128/spectrum.02076-21
9.    Rezaei T, Mehramouz B, Gholizadeh P, et al. Factors associated with Streptococcus mutans pathogenicity in the oral cavity. Biointerface Res Appl Chem. 2023; 13(4): 368. https://doi.org/10.1186/s12903-024-04893-4
10.    Wade WG. Resilience of the oral microbiome. Periodontology 2000 2021; 86(1): 113-22. http://dx.doi.org/10.1111/prd.12365
11.    Vaziriamjad S, Solgi M, Kamarehei F, Nouri F, Taheri M. Evaluation of L-arginine supplement on the growth rate, biofilm formation, and antibiotic susceptibility in Streptococcus mutans. Eur J Med Res. 2022; 27(1): 108. https://doi.org/10.1186/s40001-022-00735-7
12.    Su Y, Yrastorza JT, Matis M, et al. Biofilms: formation, research models, potential targets, and methods for prevention and treatment. Advanced Science. 2022; 9(29): 2203291. https://doi.org/10.1002/advs.202203291
13.    Ali‐Seyed M, Jantan I, Vijayaraghavan K, Bukhari SNA. Betulinic acid: recent advances in chemical modifications, effective delivery, and molecular mechanisms of a promising anticancer therapy. Chem Biol Drug Des. 2016; 87(4): 517-36. https://doi.org/10.1111/cbdd.12682
14.    Khan H, Sarmin N. Antibacterial Activities Of Methanol Extract Of Ziziphus Mauritiana Leaves On Cariogenic Bacteria. E–Academia Special Issue GraCe. 2018. https://orcid.org/0000-0001-5231-7323
15.    Gani BA, Asmah N, Soraya C, et al. Characteristics and Antibacterial Properties of Film Membrane of Chitosan-Resveratrol for Wound Dressing. Emerging Science Journal. 2023; 7(3): 821-42. http://dx.doi.org/10.28991/ESJ-2023-07-03-012
16.    Sutton S. Measurement of microbial cells by optical density. Journal of Validation Technology. 2011; 17(1): 46-49.
17.    Gani BA, Bachtiar EW, Bachtiar BM. The role of cigarettes smoke condensate in enhanced Candida albicans virulence of salivary isolates based on time and temperature. Journal of International Dental and Medical Research. 2017; 10: 769-77.
18.    Soraya C, Alibasyah ZM, Nazar M, Gani BA. Chemical Constituents of Moringa oleifera Leaves of Ethanol Extract and its Cytotoxicity against Enterococcus faecalis of Root Canal Isolate. Research Journal of Pharmacy and Technology. 2022; 15(8): 3523-30. http://dx.doi.org/10.52711/0974-360X.2022.00591
19.    Purushothaman B, Suganthi N, Jothi A, Shanmugam K. Molecular Docking Studies of potential anticancer agents from Ocimum basilicum L. against human colorectal cancer regulating genes: An insilico approach. Research Journal of Pharmacy and Technology. 2019; 12(7): 3423-27. https://doi.org/10.5958/0974-360X.2019.00579.1
20.    Mongalo N, Mashele S, Makhafola T. Ziziphus mucronata Willd.(Rhamnaceae): it's botany, toxicity, phytochemistry and pharmacological activities. Heliyon. 2020; 6(4). https://doi.org/10.1016/j.heliyon.2020.e03708
21.    Gutiérrez-Morales A, Velázquez-Ordoñez V, Khusro A, et al. Anti-staphylococcal properties of Eichhornia crassipes, Pistacia vera, and Ziziphus amole leaf extracts: Isolates from cattle and rabbits. Microbial Pathogenesis. 2017; 113: 181-89. https://doi.org/10.1016/j.micpath.2017.10.015
22.    Sameera N, Mandakini B. Investigations into the antibacterial activity of Ziziphus mauritiana Lam. and Ziziphus xylopyra (Retz.) Willd. International Food Research Journal. 2015; 22(2): 849.
23.    Rahman A, Harunsani MH, Tan AL, et al. Effect of Mg doping on ZnO fabricated using aqueous leaf extract of Ziziphus mauritiana Lam. for antioxidant and antibacterial studies. Bioprocess and Biosystems Engineering. 2021; 44: 875-89. https://link.springer.com/article/10.1007/s00449-020-02496-1
24.    Rahman A, Tan AL, Harunsani MH, et al. Visible light induced antibacterial and antioxidant studies of ZnO and Cu-doped ZnO fabricated using aqueous leaf extract of Ziziphus mauritiana Lam. Journal of Environmental Chemical Engineering. 2021; 9(4): 105481. http://dx.doi.org/10.1016/j.jece.2021.105481
25.    Singh AM, Rekha N, Udayashankar AC, Sumana K. Phytochemical Analysis and Evaluation of Antimicrobial, Antioxidant, Anti-inflammatory and Antiangiogenic activities of Methanol extract of Urochloa ramosa. Research Journal of Pharmacy and Technology. 2022; 15(8): 3571-79. http://dx.doi.org/10.52711/0974-360X.2022.00599
26.    Deepa VKS, Rajaram K, Kumar PS. Letters in Applied NanoBioScience.
27.    Vogel WH. Infusion reactions: diagnosis, assessment, and management. Clin J Oncol Nurs. 2010; 14(2): E10. https://doi.org/10.1188/10.cjon.e10-e21
28.    Jwara NDL. Antimicrobial properties of traditional medicine used for treatment of HIV/AIDS and its opportunistic infections. 2012.
29.    Aucamp J, Bronkhorst AJ, Badenhorst CP, Pretorius PJ. The diverse origins of circulating cell‐free DNA in the human body: a critical re‐evaluation of the literature. Biological Reviews. 2018; 93(3): 1649-83. https://doi.org/10.1111/brv.12413
30.    Preda VG, Săndulescu O. Communication is the key: biofilms, quorum sensing, formation and prevention. Discoveries (Craiova). 2019; 7(3): e100. https://doi.org/10.15190/d.2019.13
31.    Israel E, Ramganesh S, Abia ALK, Chikere CB. Quorum Sensing: Unravelling the Intricacies of Microbial Communication for Biofilm Formation, Biogeochemical Cycling, and Biotechnological Applications. Journal of Marine Science and Engineering. 2023; 11(8): 1586. http://dx.doi.org/10.3390/jmse11081586
32.    Jayaprakashvel M, Sami M, Subramani R. Antibiofilm, antifouling, and anticorrosive biomaterials and nanomaterials for marine applications. Nanostructures for Antimicrobial and Antibiofilm Applications. 2020: 233-72. http://dx.doi.org/10.1007/978-3-030-40337-9_10
33.    Khan MM, Matussin SN, Rahman A. Recent development of metal oxides and chalcogenides as antimicrobial agents. Bioprocess and Biosystems Engineering. 2023: 1-19. https://doi.org/10.1007/s00449-023-02878-1
34.    Xu D, Xiao J, Jiang D, et al. Inhibitory effects of a water-soluble jujube polysaccharide against biofilm-forming oral pathogenic bacteria. International Journal of Biological Macromolecules. 2022;208:1046-62. https://doi.org/10.1016/j.ijbiomac.2022.03.196
35.    Fadriyanti O, Widyawati W, Gani B. Physical Response of Acrylic Resin In Effect Of Ziziphus Mauritiana Lam Related to Growth and Biofilm Formation of Candida albicans. Rasayan Journal of Chemistry. 2023; 16(3): 1416-64. http://dx.doi.org/10.31788/RJC.2023.1638158
36.    Roy R, Tiwari M, Donelli G, Tiwari V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence. 2018; 9(1): 522-54.
37.    Lv X, Wang L, Mei A, et al. Recent nanotechnologies to overcome the bacterial biofilm matrix barriers. Small. 2023; 19(6): 2206220. https://doi.org/10.1080/21505594.2017.1313372
38.    Joshi AS, Singh P, Mijakovic I. Interactions of gold and silver nanoparticles with bacterial biofilms: Molecular interactions behind inhibition and resistance. International Journal of Molecular Sciences. 2020; 21(20): 7658. https://doi.org/10.3390/ijms21207658
39.    Qais FA, Ahmad I. Anti-quorum sensing and biofilm inhibitory effect of some medicinal plants against gram-negative bacterial pathogens: In vitro and in silico investigations. Heliyon. 2022; 8(10). https://doi.org/10.1016/j.heliyon.2022.e11113
40.    Galarraga‐Vinueza M, Mesquita‐Guimarães J, Magini R, et al. Anti‐biofilm properties of bioactive glasses embedding organic active compounds. Journal of Biomedical Materials Research Part A. 2017; 105(2): 672-79. https://doi.org/10.1002/jbm.a.35934
41.    Dembitsky VM, Al Quntar AAA, Srebnik M. Natural and synthetic small boron-containing molecules as potential inhibitors of bacterial and fungal quorum sensing. Chemical Reviews. 2011; 111(1): 209-37. http://dx.doi.org/10.1021/cr100093b
42.    Das R, Mehta DK. Microbial biofilm and quorum sensing inhibition: Endowment of medicinal plants to combat multidrug-resistant bacteria. Current Drug Targets 2018; 19(16): 1916-32. https://doi.org/10.2174/1389450119666180406111143
43.    Al-Sohaibani S, Murugan K. Anti-biofilm activity of Salvadora persica on cariogenic isolates of Streptococcus mutans: in vitro and molecular docking studies. Biofouling. 2012; 28(1): 29-38. https://doi.org/10.1080/08927014.2011.647308

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available