Author(s):
Kholis Amalia Nofianti, Dyan Maulani, Firmansyah Ardian Ramadhani, Sugijanto Kartosentono, Noor Erma Nasution Sugijanto
Email(s):
kholis-a-n@ff.unair.ac.id
DOI:
10.52711/0974-360X.2025.00309
Address:
Kholis Amalia Nofianti1, Dyan Maulani1,2, Firmansyah Ardian Ramadhani1, Sugijanto Kartosentono1, Noor Erma Nasution Sugijanto1
1Departement of Pharmaceutical Sciences, Faculty of Pharmacy Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya, East Java 60115, Indonesia.
2Pharmacy Academy Jember, Jember, Indonesia.
*Corresponding Author
Published In:
Volume - 18,
Issue - 5,
Year - 2025
ABSTRACT:
The heavy metal pollution leads to ecosystem disruption and causes a worrying effect on health. On the other hand, Chitosan is an abundant biopolymer which is formed from alkaline N-deacetylation process of chitin and has adsorption ability to remove heavy metal ions. This research aims to evaluate the potential of capiz shellfish, both as chitosan isolate and as raw powder, to become a heavy metal biosorbent. This research examined the potentiality of chitosan and Placuna placenta (Kerang Simping), or Capiz shells waste as biosorbent for three heavy metals, which were Cu2+, Cd2+, and Pb2+. Chitosan was isolated from the Placuna placenta shells through deproteinization, demineralization, and deacetylation processes. The potential as a biosorbent was examined on a column with an inner diameter of 17.5mm and a height of 150mm. Chitosan powder and Capiz shells were packed into the column, then a test solution of 10mg/L was passed into the column with a contact time of 30 minutes. To evaluate the repeated adsorption ability, elution was carried out 2 times. The result showed that there was no significant difference of biosorbent ability between chitosan and Placuna placenta shells powder. Both chitosan and Placuna placenta shells powder were able to remove more than 90% of heavy metal, also at the second elution. The statistical analysis revealed that there was no significant difference between the first and second adsorption.
Cite this article:
Kholis Amalia Nofianti, Dyan Maulani, Firmansyah Ardian Ramadhani, Sugijanto Kartosentono, Noor Erma Nasution Sugijanto. Biosorption of Heavy Metals Cu2+, Cd2+, and Pb2+ by Chitosan and Powder from Capiz shell (Placuna placenta). Research Journal of Pharmacy and Technology. 2025;18(5):2155-3. doi: 10.52711/0974-360X.2025.00309
Cite(Electronic):
Kholis Amalia Nofianti, Dyan Maulani, Firmansyah Ardian Ramadhani, Sugijanto Kartosentono, Noor Erma Nasution Sugijanto. Biosorption of Heavy Metals Cu2+, Cd2+, and Pb2+ by Chitosan and Powder from Capiz shell (Placuna placenta). Research Journal of Pharmacy and Technology. 2025;18(5):2155-3. doi: 10.52711/0974-360X.2025.00309 Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-5-32
REFERENCES:
1. Zhang P. Yang M. Lan J. Huang Y. Zhang J. Huang S et al. Water Quality Degradation Due to Heavy Metal Contamination: Health Impacts and Eco-Friendly Approaches for Heavy Metal Remediation, Toxics. 2023 Oct; 11(828). doi:10.3390/toxics11100828.
2. Qasem NAA. Mohammed RH. Lawal DU. Removal of heavy metal ions from wastewater: a comprehensive and critical review, npj Clean Water. 2021; 4(36). doi:10.1038/s41545-021-00127-0.
3. Amkieltiela. Handayani CN. Andradi-Brown DA. Estradivari. Ford AK. Beger M et al. The rapid expansion of Indonesia’s marine protected area requires improvement in management effectiveness, Marine Policy. 2022; 146(December 2021): 105257. doi:10.1016/j.marpol.2022.105257.
4. Mohan GVK. Rao KK. Rao PVVP. Environmental impact assessment of sediment quality analysis of Bhavanapadu mangrove ecosystem, East Coast of India, Asian Journal of Research in Chemistry. 2011; 4(7): 1067–72.
5. Derouiche S. Cheradid T. Guessoum M. Heavy metals, oxidative stress and inflammation in pathophysiology of chronic kidney disease - a review, Asian Journal of Pharmacy and Technology. 2020; 10(3): 202–6. doi:10.5958/2231-5713.2020.00033.1.
6. Kumar V. Kaur N. Wadhwa P. A Review Over the effect of Heavy Metal in Metabolism of Brassica juncea (L.) and Myristica fragrans, Asian Journal of Pharmaceutical Research. 2021; 11(2): 97–103. doi:10.52711/2231-5691.2021.00019.
7. Mbui D. Chebet E. Kamau G. Kibet J. The state of water quality in Nairobi River, Kenya, Asian Journal of Research in Chemistry 2016; 9(11):579–86. doi:10.5958/0974-4150.2016.00078.x.
8. Rajeshwari BM. Patil SJ. Heavy Metals Status in Soils of Ballari District using Atomic Absorption Spectroscopy (AAS), Asian Journal of Research in Chemistry. 2018; 11(4): 701–4. doi:10.5958/0974-4150.2018.00123.2.
9. Saha A. Roy S. Harmful Effects of Different Classes of Heavy Metals in Our Beautiful Environment, Asian Journal of Research in Chemistry. 2023; 16(1): 13–7. doi:10.52711/0974-4150.2023.00003.
10. Yadav M. Gupta R. Sharma RK. Green and Sustainable Pathways for Wastewater Purification, In: Advances in Water Purification Techniques: Meeting the Needs of Developed and Developing Countries. 2019. p. doi:10.1016/B978-0-12-814790-0.00014-4.
11. Abhilash DP. Rose SV. Indirani B. Removal of Cadmium (II) from aqueous solution using Coffee powder-A Kinetic study, Asian Journal of Research in Chemistry. 2018; 11(2): 360–4. doi:10.5958/0974-4150.2018.00065.2.
12. Hossain A. Bhattacharyya SR. Aditya G. Biosorption of cadmium by waste shell dust of fresh water mussel lamellidens marginalis: Implications for metal bioremediation, ACS Sustainable Chemistry and Engineering. 2015; 3(1): 1–8. doi:10.1021/sc500635e.
13. Jaishankar M. Mathew Baby B. Shah Sailesh M. Murty K. Gowda S. Biosorption of selected heavy metal ions and methylene, Journal of Environmental and Human Health; 2014.
14. Femina Carolin FC. Kamalesh T. Kumar PS. Rangasamy G. A Critical Review on the Sustainable Approaches for the Removal of Toxic Heavy Metals from Water Systems, Industrial and Engineering Chemistry Research. 2023; 62(22): 8575–601. doi:10.1021/acs.iecr.3c00709.
15. Samant RA. Gurav VL. A Biosorption of Heavy Metal Ions from effluent using Waste Fish Scale, Asian Journal of Research in Chemistry. 2018; 11(5): 775–7. doi:10.5958/0974-4150.2018.00136.0.
16. Chauhan P. Mathur J. Phytoremediation efficiency of Helianthus annuus L. for reclamation of heavy metals-contaminated industrial soil, Environmental Science and Pollution Research 2020; 27(24): 242–5. doi:10.1007/s11356-020-09233-x.
17. Kelly-Vargas K. Cerro-Lopez M. Reyna-Tellez S. Bandala ER. Sanchez-Salas JL. Biosorption of heavy metals in polluted water, using different waste fruit cortex, Physics and Chemistry of the Earth. 2012; 37–39: 26–9. doi:10.1016/j.pce.2011.03.006.
18. Pellis A. Guebitz GM. Nyanhongo GS. Chitosan: Sources, Processing and Modification Techniques. Gels. 2022; 8: doi:10.3390/gels8070393.
19. Kumar A. Kumar P. Chopra S. Sindhu A. Application of Chitosan Nanoparticles in the Adsorption of Heavy Metals from Wastewater: A Concise Review, Asian Journal of Research in Chemistry. 2023; 16(5): 389–93. doi:10.52711/0974-4150.2023.00063.
20. Essel TYA. Koomson A. Seniagya MPO. Cobbold GP. Kwofie SK. Asimeng BO et al. Chitosan composites synthesized using acetic acid and tetraethylorthosilicate respond differently to methylene blue adsorption, Polymers. 2018; 10(5): 466–79. doi:10.3390/polym10050466.
21. Saheed IO. Oh W Da. Suah FBM. Chitosan modifications for adsorption of pollutants – A review, Journal of Hazardous Materials. 2021; 408. doi:10.1016/j.jhazmat.2020.124889.
22. Vakili M. Mojiri A. Zwain HM. Yuan J. Giwa AS. Wang W et al. Effect of beading parameters on cross-linked chitosan adsorptive properties, Reactive and Functional Polymers. 2019; 144. doi:10.1016/j.reactfunctpolym.2019.104354.
23. Abidin NAZ. Kormin F. Abidin NAZ. Anuar NAFM. Bakar MFA. The potential of insects as alternative sources of chitin: An overview on the chemical method of extraction from various sources, International Journal of Molecular Sciences. 2020; 21(14). doi:10.3390/ijms21144978.
24. Crognale S. Russo C. Petruccioli M. D’annibale A. Chitosan Production by Fungi: Current State of Knowledge, Future Opportunities and Constraints, Fermentation. 2022; 8(2): 76–101. doi:10.3390/fermentation8020076.
25. Joseph SM. Krishnamoorthy S. Paranthaman R. Moses JA. Anandharamakrishnan C. A review on source-specific chemistry, functionality, and applications of chitin and chitosan, Carbohydrate Polymer Technologies and Applications. 2021; 2. doi:10.1016/j.carpta.2021.100036.
26. Sawiji A. Perdanawati RA. Mapping of Shell Waste Usage Using An Asset Based Community Approach (Case Study: Nambangan Cumpat Village, Surabaya) [Pemetaan Pemanfaatan Limbah Kerang Dengan Pendekatan Masyarakat Berbasis Aset (Studi Kasus: Desa Nambangan Cumpat, Surabaya)], Marine Journal. 2017; 3(1):10–9.
27. Maulani D. Nofianti KA. Sugijanto NE. Kartosentono S. An Eco-Friendly Absorption Method of Cu2+, Cd2+, and Pb2+ Using the Shells and Chitosan Derived from Solen vagina, Journal of Ecological Engineering. 2021; 22(7): 212–22. doi:10.12911/22998993/139118.
28. No HK. Meyers SP. Preparation and characterization of chitin and chitosan- a review, Journal of Aquatic Food Product Technology. 1995; 4(2):27–52. doi:10.1300/J030v04n02_03.
29. Tsaih ML. Chen RH. The effect of reaction time and temperature during heterogenous alkali deacetylation on degree of deacetylation and molecular weight of resulting chitosan, Journal of Applied Polymer Science. 2003; 88(13):2917–23. doi:10.1002/app.11986.
30. Mohammed MH. Williams PA. Tverezovskaya O. Extraction of chitin from prawn shells and conversion to low molecular mass chitosan, Food Hydrocolloids. 2013; 31(2):166–71. doi:10.1016/j.foodhyd.2012.10.021.
31. Pratiwi R. Prinajati PD. Adsorption for Lead Removal by Chitosan from Shrimp Shells, Indonesian Journal of Urban And Environmental Technology. 2018; 2(1):35–46. doi:10.25105/urbanenvirotech.v2i1.3554.
32. Bakkali K. Martos NR. Souhail B. Ballesteros E. Determination of Heavy Metal Content in Vegetables and Oils From Spain and Morocco by Inductively Coupled Plasma Mass Spectrometry, Analytical Letters. 2012; 45(8):907–19. doi:10.1080/00032719.2012.655658.
33. Ghaedi M. Ahmadi F. Shokrollahi A. Simultaneous preconcentration and determination of copper, nickel, cobalt and lead ions content by flame atomic absorption spectrometry, Journal of Hazardous Materials. 2007; 142(1–2):272–8. doi:10.1016/j.jhazmat.2006.08.012.
34. Igberase E. Osifo P. Ofomaja A. The adsorption of copper (II) ions by polyaniline graft chitosan beads from aqueous solution: Equilibrium, kinetic and desorption studies, Journal of Environmental Chemical Engineering. 2014; 2(1):362–9. doi:10.1016/j.jece.2014.01.008.
35. Wu FC. Tseng RL. Juang RS. A review and experimental verification of using chitosan and its derivatives as adsorbents for selected heavy metals, Journal of Environmental Management. 2010; 91(4):798–806. doi:10.1016/j.jenvman.2009.10.018.
36. Gerente C. Lee VKC. Le Cloirec P. McKay G. Application of chitosan for the removal of metals from wastewaters by adsorption -Mechanisms and models review, Critical Reviews in Environmental Science and Technology. 2007; 37(1):41–127. doi:10.1080/10643380600729089.
37. Younes I. Rinaudo M. Chitin and chitosan preparation from marine sources. Structure, properties and applications, Marine Drugs. 2015; 13(3):1133–74. doi:10.3390/md13031133.
38. Duarte ML. Ferreira MC. Marvão MR. Rocha J. An optimised method to determine the degree of acetylation of chitin and chitosan by FTIR spectroscopy, International Journal of Biological Macromolecules. 2002; 31(1–3):1–8. doi:10.1016/S0141-8130(02)00039-9.
39. Oduor-Odeto PM. Struszezyk MH. Peter MG. Characterisation of Chitosan from Blowfly Larvae and Some Crustacean Species from Kenyan Marin Waters Prepared Under Different Conditions, Western Indian Ocean Journal of Marine Science. 2007; 4(1):99–107. doi:10.4314/wiojms.v4i1.28478.
40. Zentz F. Bédouet L. Almeida MJ. Milet C. Lopez E. Giraud M. Characterization and quantification of chitosan extracted from nacre of the abalone haliotis tuberculata and the oyster pinctada maxima, Marine Biotechnology. 2001; 3(1):36–44. doi:10.1007/s101260000042.
41. Yuwono M. Indrayanto G. Validation of Chromatographic Methods of Analysis, Profiles of Drug Substances, Excipients and Related Methodology 2005; 32(5):241–60. doi:10.1016/S0099-5428(05)32009-0.
42. AOAC. Official Methods of Analysis of AOAC International, Association of Official Analysis Chemists International. 2005;
43. Barakat MA. New trends in removing heavy metals from industrial wastewater, Arabian Journal of Chemistry. 2011; 4(4):361–77. doi:10.1016/j.arabjc.2010.07.019.
44. Sun X. Peng B. Ji Y. Chen J. Li D. Chitosan(Chitin)/Cellulose Composite Biosorbents Prepared Using Ionic Liquid for Heavy Metal Ions Adsorption, AIChE Journal. 2012; 59(4):215–28. doi:10.1002/aic.