Author(s): Madhulika Pradhan, Krishna Yadav, Atul Kumar Rajak, Swati Dubey, Sunita Minz

Email(s): sunita.minz@igntu.ac.in

DOI: 10.52711/0974-360X.2025.00302   

Address: Madhulika Pradhan1, Krishna Yadav2, Atul Kumar Rajak3, Swati Dubey3, Sunita Minz3*
1Gracious College of Pharmacy, Abhanpur, Chhattisgarh, India, 493661.
2Rungta College of Pharmaceutical Sciences and Research, Kohka Road, Kurud, Bhilai, Chhattisgarh, India,491024.
3Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak Madhya Pradesh, India 484887.
*Corresponding Author

Published In:   Volume - 18,      Issue - 5,     Year - 2025


ABSTRACT:
Antimicrobial hydrogels have attracted considerable interest from researchers because of their potential applications for wound management, drug delivery and tackling infections. In this research, we outline the preparation and characterization of a new Schiff base hydrogel derived from dialdehyde alginate (DAA) and Chitosan and incorporated with Ciprofloxacin Hydrochloride (CFH), a well-known antibiotic agent to improve the antimicrobial activity of the hydrogel. The hydrogel was prepared through oxidation of the sodium alginate to aldehyde functional groups using sodium periodate and then formed crosslinks with chitosan using Schiff base reactions. Ciprofloxacin was encapsulated into the hydrogel to further increase the antimicrobial activity. The polymer and hydrogels were characterized by different parameter, including Fourier transform Infrared (FTIR) spectroscopy for confirmation of successful Schiff base formation; Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD) for structural morphology assessment; other tests to establish gelation properties and swelling behaviours. The results indicated that the hydrogel had excellent antimicrobial abilities with CFH had a controlled release capability and good stability. Our study revealed the potential that this CHI-DAA-based Schiff base antimicrobial hydrogel has the ability to be a biocompatible and effective material for healthcare applications such as infection control and wound healing.


Cite this article:
Madhulika Pradhan, Krishna Yadav, Atul Kumar Rajak, Swati Dubey, Sunita Minz. Synthesis and characterization of dialdehyde alginate and chitosan-based ciprofloxacin enriched Hydrogel for wound healing. Research Journal of Pharmacy and Technology. 2025;18(5):2107-4. doi: 10.52711/0974-360X.2025.00302

Cite(Electronic):
Madhulika Pradhan, Krishna Yadav, Atul Kumar Rajak, Swati Dubey, Sunita Minz. Synthesis and characterization of dialdehyde alginate and chitosan-based ciprofloxacin enriched Hydrogel for wound healing. Research Journal of Pharmacy and Technology. 2025;18(5):2107-4. doi: 10.52711/0974-360X.2025.00302   Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-5-25


REFERENCES:
1.    S.K. Singh, S.D. Dwivedi, K. Yadav, K. Shah, N.S. Chauhan, M. Pradhan, M.R. Singh, D. Singh. Novel Biotherapeutics Targeting Biomolecular and Cellular Approaches in Diabetic Wound Healing. Biomedicines. 2023 Feb 18; 11(2): 613. doi.org/10.3390/biomedicines11020613.
2.    A. Kumari, N. Raina, A. Wahi, K.W. Goh, P. Sharma, R. Nagpal, A. Jain, L.C. Ming, M. Gupta. Wound-Healing Effects of Curcumin and Its Nanoformulations: A Comprehensive  Review. Pharmaceutics. 2022; 14(11): 2288. doi.org/10.3390/pharmaceutics14112288.
3.    H.A. Ladhani, C.J. Yowler, J.A. Claridge. Burn Wound Colonization, Infection, and Sepsis. Surg Infect (Larchmt). 2021; 22: 44–48. doi.org/10.1089/sur.2020.346.
4.    J. Maitz, J. Merlino, S. Rizzo, G. McKew, P. Maitz. Burn wound infections microbiome and novel approaches using therapeutic microorganisms in burn wound infection control. Advanced Drug Delivery Review. 2023; 196 : 114769. doi.org/10.1016/j.addr.2023.114769.
5.    M. Farahani, A. Shafiee. Wound Healing: From Passive to Smart Dressings. Adv Healthc Mater. 2021; 10 (16): 2100477. doi.org/10.1002/adhm.202100477.
6.    K. Nuutila, E. Eriksson. Moist Wound Healing with Commonly Available Dressings. Adv Wound Care (New Rochelle). 2021; 10: 685–698. doi.org/10.1089/wound.2020.1232.
7.    W. Shu, Y. Wang, X. Zhang, C. Li, H. Le, F. Chang. Functional Hydrogel Dressings for Treatment of Burn Wounds. Front Bioeng Biotechnol. 2021; 9: 788461. doi.org/10.3389/fbioe.2021.788461.
8.    M. Kumari, D.K. Nanda. Potential of Curcumin nanoemulsion as antimicrobial and wound healing agent in burn wound infection. Burns. 2023; 49: 1003–1016. doi.org/10.1016/j.burns.2022.10.008.
9.    D.K. Ozhathil, S.E. Wolf. Prevention and treatment of burn wound infections: the role of topical  antimicrobials. Expert Rev Anti Infect Ther. 2022; 20: 881–896. doi.org/10.1080/14787210.2022.2044795.
10.    N. Yu, Y. Li, Y. Wang, H. Xu, F. Ye, Q. Fu. Healing effect of carboxymethyl chitosan-plantamajoside hydrogel on burn wound skin. Burns. 2022; 48: 902–914. doi.org/10.1016/j.burns.2022.01.019.
11.    S.Z. Zainuddin, N.J.M.R. Ramond, N.K. Anuar. Polysaccharide-Based Formulations for the Treatment of Diabetic Wounds: A Review. Res J Pharm Technol. 2023; 16: 2835–2842. doi.org/10.52711/0974-360X.2023.00467.
12.    Z. Ahmadian, H. Gheybi, M. Adeli. Efficient wound healing by antibacterial property: Advances and trends of hydrogels, hydrogel-metal NP composites and photothermal therapy platforms. J Drug Deliv Sci Technol. 2022; 73: 103458. doi.org/https://doi.org/10.1016/j.jddst.2022.103458.
13.    J. Long, A.E. Etxeberria, A. V Nand, C.R. Bunt, S. Ray, A. Seyfoddin. A 3D printed chitosan-pectin hydrogel wound dressing for lidocaine hydrochloride delivery. Materials Science and Engineering: C. 2019; 104: 109873. doi.org/10.1016/j.msec.2019.109873.
14.    W. Peng, D. Li, K. Dai, Y. Wang, P. Song, H. Li, P. Tang, Z. Zhang, Z. Li, Y. Zhou, C. Zhou. Recent progress of collagen, chitosan, alginate and other hydrogels in skin repair and wound dressing applications. Int J Biol Macromol. 2022; 208: 400–408. doi.org/10.1016/j.ijbiomac.2022.03.002.
15.    S. Costa-Fernandez, J.K.R. Matos, G.S. Scheunemann, G.C. Salata, M. Chorilli, I.-S. Watanabe, G.L.B. de Araujo, M.F. Santos, K. Ishida, L.B. Lopes. Nanostructured lipid carriers containing chitosan or sodium alginate for co-encapsulation of antioxidants and an antimicrobial agent for potential application in wound healing. Int J Biol Macromol. 2021; 183: 668–680. doi.org/10.1016/j.ijbiomac.2021.04.168.
16.    A.H. Hashem, A.M. Shehabeldine, O.M. Ali, S.S. Salem. Synthesis of Chitosan-Based Gold Nanoparticles: Antimicrobial and Wound-Healing  Activities. Polymers (Basel). 2022; 14(11): 2293. doi.org/10.3390/polym14112293.
17.    Y. Piao, H. You, T. Xu, H.-P. Bei, I.Z. Piwko, Y.Y. Kwan, X. Zhao. Biomedical applications of gelatin methacryloyl hydrogels. Engineered Regeneration. 2021; 2: 47–56. doi.org/10.1016/j.engreg.2021.03.002.
18.    W. Zhang, X.L. Sun, Q. Yang, Y. Guo, Y. Cui, Y. Xiang, B. Hu, J. Wei, P. Tu. In situ forming of PEG-NH2/dialdehyde starch Schiff-base hydrogels and their application in slow-release urea. Int J Biol Macromol. 2024; 256: 128355. doi.org/10.1016/j.ijbiomac.2023.128355.
19.    M. Sajjadi, R. Jamali, T. Kiyani, Z. Mohamadnia, A.R. Moradi. Characterization of Schiff base self-healing hydrogels by dynamic speckle pattern analysis. Sci Rep. 2024; 14(1): 27950. doi.org/10.1038/s41598-024-79499-5.
20.    Signini, R., Campana Filho, S. On the preparation and characterization of chitosan hydrochloride. Polymer Bulletin. 1999; 42(2): 159–166. doi.org/10.1007/s002890050448.
21.    S.A. Sideek, H.B. El-Nassan, A.R. Fares, N.A. Elkasabgy, A.N. ElMeshad. Cross-Linked Alginate Dialdehyde/Chitosan Hydrogel Encompassing Curcumin-Loaded Bilosomes for Enhanced Wound Healing Activity. Pharmaceutics. 2024; 16(1): 90. doi.org/10.3390/pharmaceutics16010090.
22.    K. Karakyriazis, V. Lührs, S. Stößlein, I. Grunwald, A. Hartwig. Synthesis and characterization of a Schiff base crosslinked hydrogel based on hyperbranched polyglycerol. Mater. Adv. 2023; 4: 1648–1655. doi.org/10.1039/D2MA01050J.
23.    A.I. Segall. Preformulation: The use of FTIR in compatibility studies. Journal of Innovations in Applied Pharmaceutical Science (JIAPS). 2019; 4 (3): 01–06.
24.    M. Pradhan, D. Singh, M.R. Singh. Fabrication, optimization and characterization of Triamcinolone acetonide loaded nanostructured lipid carriers for topical treatment of psoriasis: Application of Box Behnken design, in vitro and ex vivo studies. J Drug Deliv Sci Technol. 2017; 41: 325–333. doi.org/https://doi.org/10.1016/j.jddst.2017.07.024.
25.    M. Pradhan, D. Singh, M.R. Singh. Development characterization and skin permeating potential of lipid based novel delivery system for topical treatment of psoriasis. Chem Phys Lipids. 2015; 186: 9–16. doi.org/10.1016/j.chemphyslip.2014.11.004.
26.    M. Pradhan, D. Singh, M.R. Singh. Influence of selected variables on fabrication of Triamcinolone acetonide loaded  solid lipid nanoparticles for topical treatment of dermal disorders. Artif Cells NanomedBiotechnol. 2016; 44: 392–400. doi.org/10.3109/21691401.2014.955105.
27.    S.A. Ansari, A. Qadir, M.H. Warsi, M. Mujeeb, M. Aqil, S.R. Mir, S. Sharma.Ethosomes-based gel formulation of karanj in for treatment of acne vulgaris: in  vitro investigations and preclinical assessment. 3 Biotech. 2021; 11(11): 1-4. doi.org/10.1007/s13205-021-02978-3.
28.    Y.O. Agrawal, U.B. Mahajan, H.S. Mahajan, S. Ojha. Methotrexate-Loaded Nanostructured Lipid Carrier Gel Alleviates Imiquimod-Induced  Psoriasis by Moderating Inflammation: Formulation, Optimization, Characterization, In-Vitro and In-Vivo Studies. Int J Nanomedicine. 2020; 15: 4763–4778. doi.org/10.2147/IJN.S247007.
29.    I.A. Tekko, G. Chen, J. Domínguez-Robles, R.R.S. Thakur, I.M.N. Hamdan, L. Vora, E. Larrañeta, J.C. McElnay, H.O. McCarthy, M. Rooney, R.F. Donnelly. Development and characterisation of novel poly (vinyl alcohol)/poly (vinyl pyrrolidone)-based hydrogel-forming microneedle arrays for enhanced and sustained transdermal delivery of methotrexate. Int J Pharm. 2020; 586: 119580. doi.org/10.1016/j.ijpharm.2020.119580.
30.    H. Khan, R.N. Shukla, A.K. Bajpai.Genipin-modified gelatin nanocarriers as swelling controlled drug delivery system for in vitro release of cytarabine. Mater Sci Eng C Mater Biol Appl. 2016; 61: 457–465. doi.org/10.1016/j.msec.2015.12.085.
31.    S. Sohrabi, A. Haeri, A. Mahboubi, A. Mortazavi, S. Dadashzadeh. Chitosan gel-embedded moxifloxacin niosomes: An efficient antimicrobial hybrid system for burn infection. Int J Biol Macromol. 2016; 85: 625–633. doi.org/https://doi.org/10.1016/j.ijbiomac.2016.01.013.
32.    M.R. Singh, D. Singh, K.K. Sahu, M. Pradhan Krishna, Yadav. A method of preparation of Triamcinolone Acetonide encapsulated nanostructured lipid carriers for psoriasis treatment. 2021; 18:18. AU2021106678.
33.    M. Pradhan, K. Yadav, D. Singh, M.R. Singh. Topical delivery of fluocinolone acetonide integrated NLCs and salicylic acid enriched gel: A potential and synergistic approach in the management of psoriasis. J Drug Deliv Sci Technol. 2021; 61: 102282. doi.org/10.1016/j.jddst.2020.102282.
34.    Veintramuthusankar, Pushparajudaya kumar, Rajanduraibabyroselin. Development of Mupirocin- Tinidazole solid- Lipid Nanoparticles Loaded Topical gel for the Management of Bacterial Wound Infections. Res J Pharm Technol. 2021; 14: 2785–2790. doi.org/10.52711/0974-360X.2021.00491.
35.    K. Yadav, D. Singh, M.R. Singh. Development and characterization of corticosteroid loaded lipid carrier system for psoriasis. Res J Pharm Technol. 2021; 14: 966–970. doi.org/10.5958/0974-360X.2021.00172.4.
36.    M. Pradhan, A. Alexander, M.R. Singh, D. Singh, S. Saraf, S. Saraf, K. Yadav, Ajazuddin. Statistically optimized calcipotriol fused nanostructured lipid carriers for effectual topical treatment of psoriasis. J Drug Deliv Sci Technol. 2021; 61: 102168. doi.org/10.1016/j.jddst.2020.102168.
37.    L. Sun, Z. Liu, L. Wang, D. Cun, H.H.Y. Tong, R. Yan, X. Chen, R. Wang, Y. Zheng. Enhanced topical penetration, system exposure and anti-psoriasis activity of two  particle-sized, curcumin-loaded PLGA nanoparticles in hydrogel. J Control Release. 2017; 254: 44–54. doi.org/10.1016/j.jconrel.2017.03.385.
38.    V. Dave, S. Sharma, R.B. Yadav, U. Agarwal. Herbal liposome for the topical delivery of ketoconazole for the effective treatment of seborrheic dermatitis. Appl Nanosci. 2017; 7: 973–987. doi.org/10.1007/s13204-017-0634-3.
39.    M.R. Singh, D. Singh, K.K. Sahu, M. Pradhan, K. Yadav. A method of preparation of Triamcinolone Acetonide encapsulated nanostructured lipid carriers for psoriasis treatment. 2021; 18: 18. AU2021106678
40.    M. Agrawal, M. Pradhan, G. Singhvi, R. Patel, Ajazuddin, A. Alexander.Thermoresponsive in situ gel of curcumin loaded solid lipid nanoparticle: Design, optimization and in vitro characterization. J Drug Deliv Sci Technol. 2022; 71: 103376. doi.org/10.1016/j.jddst.2022.103376.



Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available