Author(s):
Saroj Kanta Bisoyi, Debasish Pradhan, Sudhir Kumar Sahoo
Email(s):
sarojbisoyi2010@gmail.com
DOI:
10.52711/0974-360X.2025.00301
Address:
Saroj Kanta Bisoyi*1,2, Debasish Pradhan1, Sudhir Kumar Sahoo2
1University Department of Pharmaceutical Sciences, Utkal University, Vani Vihar, Bhubaneswar, 751004, Odisha, India.
2Royal College of Pharmacy and Health Sciences, Berhampur - 760002, Odisha, India.
*Corresponding Author
Published In:
Volume - 18,
Issue - 5,
Year - 2025
ABSTRACT:
The present work aimed to develop a straightforward, simple and cost-effective UV Spectroscopic technique employing methanol and water (1:1) as a solvents. The method focused on a simple, rapid, specific, accurate, precise, and selective approach in the estimation of Eltrombopag in bulk and tablet dosage form for routine analysis. The ICH Q2 (R1) guideline was followed during method development and validation. Eltrombopag is the drug of choice in the treatment of thrombocytopenia and severe aplastic anemia. Eltrombopag is a BCS Class II medication that is sparingly soluble in water and has a pKa of about 3.5. Its solubility varies with pH, becoming more soluble at lower pH levels and more soluble in the organic solvent methanol. The method utilizes water and methanol (1:1), with a maximum absorption wavelength detected at 245nm. The method is specific; no interference with blank and placebo. Linearity in the concentration range of 1.00 to 40.00 µg/mL, exhibiting a high correlation coefficient of 0.999. Precision was demonstrated with an RSD below 2%, while LOD and LOQ were determined as 1.5µg/mL and 4.51µg/mL respectively. The drug recovery rate falls within the range of 99.94 to 100.65%. The solution was stable for 24hours at room temperature condition. The parameters validated were precision, linearity, accuracy, robustness and specificity as per ICH guidelines were found to be satisfactory for the routine analysis of Eltrombopag by UV spectroscopy.
Cite this article:
Saroj Kanta Bisoyi, Debasish Pradhan, Sudhir Kumar Sahoo. Quantitative Estimation of Eltrombopag in Bulk and Tablet Dosage Form by UV- Spectroscopy. Research Journal of Pharmacy and Technology. 2025;18(5):2101-6. doi: 10.52711/0974-360X.2025.00301
Cite(Electronic):
Saroj Kanta Bisoyi, Debasish Pradhan, Sudhir Kumar Sahoo. Quantitative Estimation of Eltrombopag in Bulk and Tablet Dosage Form by UV- Spectroscopy. Research Journal of Pharmacy and Technology. 2025;18(5):2101-6. doi: 10.52711/0974-360X.2025.00301 Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-5-24
REFERENCES:
1. Maiorino, M.I., Chiodini, P., Bellastella, G., Scappaticcio, L., Longo, M., Giugliano, D. and Esposito, K. The good companions: insulin and glucagon-like peptide-1 receptor agonist in type 2 diabetes. A systematic review and meta-analysis of randomized controlled trials. Diabetes Research and Clinical Practice. 2019: 154: 101-115. https://doi.org/10.1016/j.diabres.2019.06.009
2. Papachristoforou, E., Lambadiari, V., Maratou, E. and Makrilakis, K. Association of Glycemic Indices (Hyperglycemia, Glucose Variability, and Hypoglycemia) with Oxidative Stress and Diabetic Complications. Journal of Diabetes Research. 2020; (1), 1-17. https://doi.org/10.1155/2020/7489795
3. Halliwel B, Gutteridge JMC. Free Radicals in Biology and Medicine. 5th edition. Oxford: Oxford University Press, 2015; 896 p.
4. Ifeanyi, O.E. A Review on Free Radicals and Antioxidants. International Journal of Current Research in Medical Sciences. 2018; 4(2): 123-133. https://dx.doi.org/10.22192/ijcrms.2018.04.02.019
5. Kim, I.S. Current Perspectives on the Beneficial Effects of Soybean Isoflavones and Their Metabolites for Humans. Antioxidants, 2021; 10(7): 1064. https://doi.org/10.3390/antiox10071064
6. Tang, J., Wan, Y., Zhao, M., Zhong, H., Zheng, J.S. and Feng, F. Legume and soy intake and risk of type 2 diabetes. The American Journal of Clinical Nutrition. 2020; 111(3): 677-688. https://doi.org/10.1093/ajcn/nqz338
7. Yang, J., Zhang, W., Du, L., Wu, H. and Guo, J. Comparative Antioxidant Properties of Some Gingerols and Shogaols, and the Relationship of Their Contents with the Antioxidant Potencies of Fresh and Dried Ginger (Zingiber officinale Roscoe). Journal of Agricultural Science and Technology. 2018; 16(5): 1063-1072. http://jast.modares.ac.ir/article-23-1979-en.html
8. Ramadan, O.I., Nasr, M., Abd El-Hay, O.M., Hasan, A., Abd-Allah, E.E.E., Mahmoud, M.E., Abd-Allah, F.M., Abuamara, T.M., Hablas, M.G., Awad, M.M. and Diab, M. Potential Protective Effect of Zingiber officinale in Comparison to Rosuvastatin on High-fat diet-induced Non-alcoholic Fatty Liver Disease in Rats. Open Access Macedonian Journal of Medical Sciences. 2022; 10(A): 916-923. https://doi.org/10.3889/oamjms.2022.9643
9. Wulansari, M.A., Lestari, S.R. and Gofur, A. Effect of black soybean cake and purple sweet potato on glucose tolerancy of diabetic type 2 rat. Biogenesis: Jurnal Ilmiah Biologi. 2018; 6(1): 28-35. https://doi.org/10.24252/bio.v6i1.4236
10. Cerulli, A., Masullo, M., Montoro, P. and Piacente, S., Licorice (Glycyrrhiza glabra, G. uralensis, and G. inflata) and Their Constituents as Active Cosmeceutical Ingredients. Cosmetics. 2022; 9(1): 7. https://doi.org/10.3390/cosmetics9010007
11. Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F., de Beer, T., Rempfer, C., Bordoli, L., Lepore, R., Schwede, T. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research. 2018: 46, 296 – 303. https://doi.org/10.1093/nar/gky427
12. Kochev N, Jeliazkova N, Tancheva G. Ambit-SLN: an Open Source Software Library for Processing of Chemical Objects via SLN Linear Notation. Molecular Informatics. 2021: 40(11): 1-8. https://doi.org/10.1002/minf.202100027
13. Bilbao, A. Encyclopedia of Bioinformatics and Computational Biology: Proteomics Mass Spectrometry Data Analysis Tools, in Bernard D.R, Reference Module in Life Sciences, 2018: 1-12 Elsevier. http://dx.doi.org/10.1016/B978-0-12-809633-8.20274-4
14. Poudel, A., Gachumi, G., Badea, I., Bashi, Z.D. and El-Aneed, A. The simultaneous quantification of phytosterols and tocopherols in liposomal formulations using validated atmospheric pressure chemical ionization- liquid chromatography –tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis. 2020; 183(1): 104-113. https://doi.org/ https://doi.org/10.1016/j.jpba.2020.113104
15. Wungsem Rungsung, Sreya Dutta, Dhirendra Nath Mondal, Jayram Hazra. Pharmacognostical Characterization on the Rhizome of Ginger. Research Journal of Pharmacognosy and Phytochemistry. 2014; 6(2): 88-91. Available on: https://rjpponline.org/AbstractView.aspx?PID=2014-6-2-7
16. Harsha V. Talele, Shalini B. Rathod, Sachin S. Pawar, Amol K. Raut, Arvind R. Umarkar. Soyabean as a Neutraceutical a Phytopharmacological: Review. Research Journal of Pharmacognosy and Phytochemistry. 2012; 4(2): 112-118.
17. Guddi Singh. Comparative Study of Supervised Learning Technique in Context of Soybeans Data. Research Journal of Engineering and Technology. 2013; 4(3): July-Sept., 121-124. Available on: https://ijersonline.org/AbstractView.aspx?PID=2013-4-3-6
18. Lifsey, H.C., Kaur, R., Thompson, B.H., Bennett, L., Temel, R.E. and Graf, G.A. Stigmasterol stimulates transintestinal cholesterol excretion independent of liver X receptor activation in the small intestine. The Journal of nutritional biochemistry. 2020; 76 (1), 108263. https://doi.org/10.1016/j.jnutbio.2019.108263
19. Caron, G., Kihlberg, J. and Ermondi, G. Intramolecular hydrogen bonding: An opportunity for improved design in medicinal chemistry. Medicinal Research Reviews. 2019; 39(5): 1707-1729. https://doi.org/10.1002/med.21562
20. de Lima, R.C., Mendonça, V.S. and Huguenin, G.V.B. Effect of phytosterols in the treatment of hypercholesterolemia in adults – systematic review with meta-analysis. Brazilian Journal of Health Review. 2021; 4(4): 16317-16338. https://doi.org/10.34119/bjhrv4n4-152
21. Unuofin, J.O. and Lebelo, S.L. Antioxidant Effects and Mechanisms of Medicinal Plants and Their Bioactive Compounds for the Prevention and Treatment of Type 2 Diabetes: An Updated Review. Oxidative Medicine and Cellular Longevity, 2020. https://doi.org/10.1155/2020/1356893
22. Manasi Nabar, Swati Patil. Glycine max: The Antioxidant and Anti-Hyperlipidemic Nutraceutical. Research Journal of Pharmacology and Pharmacodynamics. 2010; 2(5): 328-331. Available on: https://rjppd.org/AbstractView.aspx?PID=2010-2-5-14
23. Yun, Y.J., Lee, H., Yoo, D.J., Yang, J.Y., Woo, S.Y., Seo, W.D., Kim, Y.C. and Lee, J.H. Molecular analysis of soyasaponin biosynthetic genes in two soybean (Glycine max L. Merr.) cultivars. Plant Biotechnology Reports. 2021; 15(1): 117-124. http://dx.doi.org/10.1007/s11816-021-00661-w
24. Daszynski, D., Santhoshkumar, P., Phadte, A., Sharma, K., Zhong, H., Lou, M., Kador, P. Failure of Oxysterols Such as Lanosterol to Restore Lens Clarity from Cataracts. Scientific Reports, 2019; 9(1): 8459-8473. https://doi.org/10.1038/s41598-019-44676-4
25. Fahrurrozi, M. and Wirawan, S.K. Antioxidant activity and controlled release analysis of red ginger oleoresin (Zingiber officinale var rubrum) encapsulated in chitosan cross-linked by glutaraldehyde saturated toluene. Sustainable Chemistry and Pharmacy. 2019; 12(1): 100132. http://dx.doi.org/10.1016/j.scp.2019.100132
26. Mahmudati, N. Ginger extract reduce TNF-α expression on rats induced by High Fat Diet (HFD). Proceeding Biology Education Conference. 2016; 13(1): 653-655. Available on: https://jurnal.uns.ac.id/prosbi/article/view/5868
27. Mohamed H. Sherif, Al-Shimaa M. Abas, Lobna A. Zaitoun. Ginger extract protect Iodinated Contrast Media Nephrotoxicity in rats through modulation of Oxidative Stress, Cystain C, NGAL and TNF α. Research Journal Pharmacy and Technology. 2018; 11(12): 5439-5448. https://doi.org/10.5958/0974-360X.2018.00992.7
28. Wei, C., Tsai, Y., Korinek, M., Hung, P., El-Shazly, M., Cheng, Y., Wu, Y., Hsieh, T., Chang, F. 6-Paradol and 6-Shogaol, the Pungent Compounds of Ginger, Promote Glucose Utilization in Adipocytes and Myotubes, and 6-Paradol Reduces Blood Glucose in High-Fat Diet-Fed Mice. International Journal of Molecular Sciences. 2017; 18 (1): 168. https://doi.org/10.3390/ijms18010168
29. Purnomo, Y. Oral glucose tolerancy of soya (Glycine max) seed extract, ginger (Zingiber officinale) rhizoma and it’s combination on diabetic rat model. Jurnal Kesehatan Islam. 2018; 7(2): 45–50. https://doi.org/10.33474/jki.v7i2.8923
30. Lipinski C, Lombardo F, Dominy B, Feeney P. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advance Drug Delivery Review. 2012; 64(1): 4-17. https://doi.org/10.1016/s0169-409x(00)00129-0
31. Sulimov VB, Kutov DC, Sulimov AV. Advances in Docking. Current Medicinal Chemistry. 2019; 26(42): 7555-7580. https://doi.org/10.2174/0929867325666180904115000
32. Hartati, F.K. and Djauhari, A.B. Potential of Black rice (Oryza Sativa l.) as Anticancer through Mortalin-P53 Complex Inhibitors. Biointerface Research Application Chemistry. 2020; 10(5): 6174-6181. https://doi.org/10.33263/BRIAC105.61746181
33. Purnomo, Y., Taufiq M, Wijaya AND, Hakim R. Molecular docking of Soybean (Glycine max) seed and Gingger (Zingiber officinale) rhizome as anti-diabetic Through Inhibition of Dipeptidyl Peptidase-4 (DPP-4) and Alpha-Glucosidase Enzymes. Tropical Journal of Natural Product Research. 2021; 5(10): 1735-1742. http://www.doi.org/10.26538/tjnpr/v1i4.5
34. Gaviraj EN, Ramarao A, Veeresham C, Shivakumar B, Kalyane NV, Biradar SM. Inhibitory activities of some Folklore remedies on Aldose reductase of rat lens and generation of advanced glycation end products. Research of Journal Pharmacy and Technology. 2019; 12(4): 1947-1952. http://dx.doi.org/10.5958/0974-360X.2019.00326.3
35. Purnomo Y, Triliana R, Wibisono N. Modulating effect of soybean (Glycine max) seed and ginger (Zingiber officinale) rhizome on plasma protein profile of diabetic rat. AIP Confrence Proceedings 2634. 2023; (020028). https://doi.org/10.1063/5.0111318
36. Purnomo Y, Triliana R, Wibisono N. Anti-atherogenic Effects of Soybean (Glycine max) Seed and Ginger (Zingiber officinale) Rhizome Extracts on Type 2 Diabetic Rat Model. Tropical Journal of Natural Product Research. 2022; 6(5): 709-713. https://tjnpr.org/index.php/home/article/view/52
37. R. Sathish Kumar, C. Aarthi. In silico Prediction of Binding Efficiency for the Phytoconstituents from Traditional Medicinal Plants against Diabetes Target: Aldose Reductase. Research Journal Pharmacy and Technology. 2017; 10(11): 3709-3712. https://doi.org/10.5958/0974-360X.2017.00673.4
38. Pradeep K. Sharma, Sabiha Mansoori. Quantitative and Qualitative Analysis of Zingiber officinale as A Crude Drug. Research Journal of Pharmacy and Technology. 2019; 12(5): 2157-2159. https://doi.org/10.5958/0974-360X.2019.00358.5
39. Mohammed K.A.A, Wasfy A.A.F, Bazalou M. S. Qualitative Analysis of Ethanolic extract of Ginger (Zingiber officinale Rosc) by Gas Chromatography Triple Quad Time-Flight (GC-Q-TOF) Technology. Research Journal of Pharmacy and Technology. 2021; 14(8): 4307-3. https://doi.org/10.52711/0974-360X.2021.00748
40. Nurul Hikmah Harun, Mohamad Firdaus Mohamad. The Immunomodulatory effects of Zingiber officinale (Ginger): A Systematic Review. Research Journal of Pharmacy and Technology. 2022; 15(8): 3776-1. http://dx.doi.org/10.52711/0974-360X.2022.00634.