Author(s): Ritmaleni, Rumiyati, Eduardo Harya Satria P., Hanisa Febrianti

Email(s): ritmaleni@ugm.ac.id

DOI: 10.52711/0974-360X.2025.00279   

Address: Ritmaleni1,2*, Rumiyati1,3, Eduardo Harya Satria P.4, Hanisa Febrianti4
1Curcumin Research Center, Faculty of Pharmacy, Gadjah Mada University, Sekip Utara, Yogyakarta, Indonesia, 55281.
2Laboratory of Medicinal Chemistry, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gadjah Mada University, Sekip Utara, Yogyakarta, Indonesia, 55281.
Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gadjah Mada University, Sekip Utara, Yogyakarta, Indonesia, 55281.
4Faculty of Pharmacy, Gadjah Mada University, Sekip Utara, Yogyakarta, Indonesia. 55281.
*Corresponding Author

Published In:   Volume - 18,      Issue - 5,     Year - 2025


ABSTRACT:
Ultra violet A (UV A) rays from sunshine exposure can harm skin and have negative effects such as skin photoaging. The exposure can also increase in intracellular reactive oxygen species (ROS) that cause wrinkles, a loss of skin tone, flexibility and skin cancer. These conditions may necessitate additional attention to the skin's health such as applying a cream to the skin. A research to screen agents with protective effect from UV is a crucial undertaking. One of the agents with the effects comes from the chemical curcumin. The purpose of this study is to assess potential of curcumin analogs against the intracellular ROS buildup caused by UV A in human dermal fibroblasts (HDF). Four curcumin analogs (PGV-5, HGV-5, THPGV-5, and THHGV-5) will be assessed in their skin-protective potential in this study. Cell line culture of HDFs was first treated with curcumin analogs at various concentrations for two hours, and then they were exposed to 3 J/cm2 UVA radiation in order to investigate this effect. Cell viability was measured using the MTT assay. The measured effective concentration that can protect the cells was utilized for intracellular ROS investigation using a method namely flow cytometry-DCFDA. Statistical analysis with a 95% confidence interval was used to analysis the data. It was demonstrated that there were cytoprotective effects of PGV-5, HGV-5, THPGV-5, and THHGV-5 on HDFs stimulated by 3 J/cm2 UV A. Following the UV A irradiation, these compounds in the concentration range of 1–4µM can keep HDF viability over 90%. HDFs can be shielded from the buildup of intracellular ROS by 1µM the curcumin analogs. According to this finding, the curcumin analogs are more protected than vitamin E and curcumin. Due to this potency, the curcumin analogs could be proposed as potential active components in cytoprotective agents.


Cite this article:
Ritmaleni, Rumiyati, Eduardo Harya Satria P., Hanisa Febrianti. The Protective effect of Curcumin Analogs of PGV-5, HGV-5, THPGV-5, and THHGV-5 on UV A-Induced Human Dermal Fibroblasts. Research Journal of Pharmacy and Technology. 2025;18(5):1951-8. doi: 10.52711/0974-360X.2025.00279

Cite(Electronic):
Ritmaleni, Rumiyati, Eduardo Harya Satria P., Hanisa Febrianti. The Protective effect of Curcumin Analogs of PGV-5, HGV-5, THPGV-5, and THHGV-5 on UV A-Induced Human Dermal Fibroblasts. Research Journal of Pharmacy and Technology. 2025;18(5):1951-8. doi: 10.52711/0974-360X.2025.00279   Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-5-2


8. REFERENCES:
1.    D'Orazio J, Jarrett S, Amaro-Ortiz A, Scott T. UV Radiation and the skin. International Journal of Molecular Sciences. 2013; 14(6): 12222–12248. https://doi.org/10.3390/ijms140612222
2.    Yogita R, Samina S, Pooja S, Jyotsana G. Review on skin cancer. Asian Journal of Research in Pharmaceutical Science. 2018; 8(2): 100-106. doi: 10.5958/2231-5659.2018.00018.8
3.    Sardjiman SS, Reksohadiprodjo MS, Hakim L, van der Goot H, Timmerman H. 1,5-Diphenyl-1,4-pentadiene-3-ones and cyclic analogues as antioxidative agents, synthesis and structure-activity relationship. European Journal of Medicinal Chemistry. 1997; 32(7-8): 625–630. https://doi.org/10.1016/S0223-5234(97)83288-6
4.    Sharma, RA, Gescher, AJ,  Steward, WP. Curcumin: the story so far. European Journal of Cancer. 2005; 41(13): 1955-1968. DOI: 10.1016/j.ejca.2005.05.009
5.    Hewlings SJ dan Kalman DS. Curcumin: A Review of Its’ Effects on Human Health. Foods, 2017; 6. doi: 10.3390/foods6100092
6.    Alabdali A, Kzar M, Chinnappan S, Mogana R, Khalivulla SI, Rahman H, Basma M, Razik A. Antioxidant activity of Curcumin. Research Journal of Pharmacy and Technology. 2021; 14(12): 6741-6. doi: 10.52711/0974-360X.2021.01164
7.    Wijianto B, Ritmaleni, Purnomo H, Nurrochmad A. Quantitative Structure Activity Relationship (QSAR) study and biological evaluation on mono-ketone analogs of Curcumin as antioxidant. Research Journal of  Pharmacy and Technology. 2020; 13(10): 4829-4835. doi: 10.5958/0974-360X.2020.00850.
8.    Ritmaleni and Simbara A. Synthesis of Tetrahydro Pentagavunon-0 (THPGV0). Indonesian Journal of Pharmacy. 2010; 21(2): 100-105. DOI: http://dx.doi.org/10.14499/indonesianjpharm0iss0pp100-105
9.    Ritmaleni, Sardjiman, Mintariyanti B, Wulandari E, Purwantini I. Antibacterial activity of Tetrahydropentagamavunon-0 (THPGV-0) and Tetrahydropentagamavunon-1 (THPGV-1). Journal of Natural Sciences Research. 2013; 3(11): 12-18.  
10.    Meiyanto E, Putri DDP, Susidarti RA, Murwanti R, Sardjiman, Fitriasari A, Husnaa U, Purnomo H, Kawaichi M. Curcumin and its analogs (PGV-0 and PGV-1) enhance sensitivity of resistant MCF-7 cells to doxorubicin through inhibition of HER2 and NF-kB activation, Asian Pacific Journal of Cancer Prevention. 2014; 15: 179–184. DOI: 10.7314/apjcp.2014.15.1.179
11.    Meiyanto E, Nakamae I, Kawaichi M, Kato JY, Lestari B, Ikawati M, Yoneda-Kato N, Utomo R., Jenie RI, Putri H, Larasati Y.  Anti-proliferative and anti-metastatic potential of curcumin analog, Pentagamavunon-1 (PGV-1), toward highly metastatic breast cancer cells in correlation with ROS Generation, Advanced Pharmaceutical Bulletin. 2019; 9(3): 445–452. DOI: 10.15171/apb.2019.053
12.    Wijianto B, Ritmaleni, Purnomo H, Nurrochmad A.  Curcumin mono-carbonyl analogs as potent antibacterial compounds: synthesis, biological evaluation and docking   simulation   study.   RASAYAN   Journal of   Chemistry. 2020; 13(2): 1153-1165. DOI: 10.31788/RJC.2020.1325554
13.    Wijianto B, Ritmaleni, Purnomo H, Nurrochmad A. In silico and in vitro anti- inflammatory evaluation of 2,6-bis-(3'-ethoxy, 4'-hydroxybenzylidene)- cyclohexanone, 2,6-bis-(3'-Bromo,4'-methoxybenzylidene)-cyclohexanone, and 2,6- bis- (3',4'-dimethoxybenzylidene)-cyclohexanone. Journal of Applied Pharmaceutical Science. 2020; 10(06): 099-106.
14.    Wijianto B, Ritmaleni, Purnomo H, Nurrochmad A. Quantitative Structure Activity Relationship (QSAR) study and biological evaluation on mono-ketone analogs of curcumin as antioxidant. Research Journal Pharmacy and Technology. 2020; 13(10): 4829-4835. DOI: 10.5958/0974-360X.2020.00850.1
15.    Ritmaleni, Hastutitama ANA, Persitamaia I, Restiwardani T, Eksakta A, Munandar RF, Abdullah M S, Purwanto A, Astuti P,  Sardjiman. Synthesis and antibacterial activity of dibenzylidene-cyclohexanone. RASAYAN Journal of Chemistry. 2021; 14(3): 2090-2096. https://rasayanjournal.co.in/admin/php/upload/3303_pdf.pdf
16.    Novitasari D, Jenie RI, Wulandari F, Utomo RY, Putri DDP, Jun-ya Kato, Meiyanto E. Curcumin-like structure (CCA-1.1) induces permanent mitotic arrest (Senescence) on Triple-negative breast cancer (TNBC) cells, 4T1. Research Journal of Pharmacy and Technology. 2021; 14(8): 4375-2. doi: 10.52711/0974-360X.2021.00760
17.    Ritmaleni, Sardjiman, Purwantini I. Antimicrobial activity of Curcumin analog PGV-6, HGV-6 and GVT-6. Research Journal of Pharmacy and Technology. 2021; 14(2): 599-604. doi: 10.5958/0974-360X.2021.00107.4
18.    Damayanti PN, Ritmaleni, Setyowati EP. Synthesis and antibacterial activity of 4-Piperidone curcumin analogues against Gram-positive and Gram-negative bacteria. Research Journal of Pharmacy and Technology. 2020; 13(10): 4765-4769. doi: 10.5958/0974-360X.2020.00838.0
19.    Singh D, Upadhyay P. Antiinflammatory and wound healing activity of Curcumin containing phytosomes, niosomes and liposomes in rats. Research Journal of Pharmacy and Technology. 2023; 16(6): 2776-8. doi: 10.52711/0974-360X.2023.00456
20.    Nugraha AP, Yudianto DO, Anwar AA, Purnamasari AE, Mappananrang RA, Faradilla N, Ramadhani, Luthfi M, Noor TNEBTA, Nugraha AP. Potential of Curcumin-quercetin loaded nanostructured lipid carriers as oral squamous cell carcinoma adjuvant therapy by downregulating AKT/PI3K signaling pathway. Research Journal of Pharmacy and Technology. 2022; 15(11): 5353-8. doi: 10.52711/0974-360X.2022.00902  
21.    Sweetha G., Sangeetha B., Prabhu S.. A Review on Curcumin nanoparticles and its controlled delivery to treat degenerative diseases. Asian Journal of Pharmacy and  Technology. 2013;  3(4): 218-222.
22.    Bhati A, Kumar S, Chaudhary R, Kumar S, Saifi A. Design and evaluation of solid lipid microparticles of Curcumin for the treatment of Alzheimer’s disease. Asian Journal of Pharmacy and Technology. 2022; 12(3): 193-1. doi: 10.52711/2231-5713.2022.00032
23.    Sunnah I. 2017. Optimasi, Stabilitas, dan Efektivitas Sediaan Krim Antiaging Tetrahidropentagamavunon-5 (THPGV-5) secara in vitro dan in vivo. Tesis. Yogyakarta: Fakultas Farmasi UGM.
24.    Rahmayanti M. 2017. Pengaruh Konsentrasi THHGV-5 Dalam Krim Anti-aging Terhadap Sifat Fisik, Stabilitas Fisik, Difusi Pasif, Efektivitas Antioksidan Pada Kolagen dan Efek Iritasi. Tesis. Yogyakarta: Fakultas Farmasi UGM.
25.    Rittié L, and Fisher GJ. Isolation and culture of skin fibroblasts. Methods Mol Med. 2005;117:83-98.
26.    Liu X, Zhang R, Shi H, Li X, Li Y, Taha A, Xu C. Protective effect of curcumin against ultraviolet A irradiation‑induced photoaging in human dermal fibroblasts. Molecular Medicine Reports, 2018; 17(5):7227-7237. DOI: 10.3892/mmr.2018.8791
27.    Khan A, Bai H, Shu M, Chen M, Khan A, Bai Z. Antioxidative and Antiphotoaging Activities of Neferine Upon UV-A irradiation in Human Dermal Fibroblasts. Bioscience Reports, 2018; 38(6):BSR20181414. DOI: 10.1042/BSR20181414
28.    Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods. 1983; 65(1-2): 55-63. DOI: 10.1016/0022-1759(83)90303-4
29.    Wulandari F, Ikawati M, Novitasari D, Kirihata M,  Kato J-Y,  Meiyanto E. New curcumin analog, CCA-1.1, synergistically improves the antiproliferative effect of doxorubicin against T47D breast cancer cells. Indonesian Journal of Pharmacy. 2020; 31: 244-256.
30.    Xue N, Liu Y, Jin J, Ji M, and Chen X. Chlorogenic acid prevents UVA-induced skin photoaging through regulating collagen metabolism and apoptosis in Human Dermal Fibroblasts. International Journal of Molecular Sciences. 2022; 23(13): 6941. DOI: 10.3390/ijms23136941
31.    Doğan, T., Akhan Güzelcan, E., Baumann, M., Koyas, A., Atas, H., Baxendale, I. R., Martin, M., and Cetin-Atalay, R. (2021). Protein domain-based prediction of drug/compound-target interactions and experimental validation on LIM kinases. PLoS computational biology, 17(11), e1009171. https://doi.org/10.1371/journal.pcbi.1009171
32.    Chang H-H, Ko H-H, Lu T-M, Lin J-Y, Chang D-C., Chu TW,  Hung C-F. Inhibition of UVA Damage on Human Skin Dermis Fibroblasts by the Isoflavonoid Intermediate Deoxybenzoin-3A. Chemical Research in Toxicology. 2021; 34(4): 1133–1139. DOI: 10.1021/acs.chemrestox.1c00005
33.    Lin H, Cheng KC, Lin JA, Hsieh LP, Chou CH, Wang YY, Lai PS, Chu PC, Hsieh CW. Pholiota nameko Polysaccharides protect against ultraviolet A-induced photoaging by regulating matrix metalloproteinases in Human Dermal Fibroblasts. Antioxidants (Basel). 2022; 11(4):739. https://doi.org/10.3390/antiox11040739
34.    Oh JH, Karadeniz F, Kong C-S,  Seo Y. Antiphotoaging effect of 3,5-Dicaffeoyl-epi-quinic Acid against UVA-induced skin damage by Protecting Human Dermal Fibroblasts in vitro. International Journal of Molecular Sciences. 2020; 21(20): 7756. DOI: 10.3390/ijms21207756
35.    Hung TM, Na M, Thuong PT, Su ND, Sok D, Song KS, Seong YH, Bae K. Antioxidant activity of caffeoyl quinic acid derivatives from the roots of Dipsacus asper Wall. Journal of Ethnopharmacology. 2006; 108(2): 188–192. DOI: 10.1016/j.jep.2006.04.029
36.    Sotler R, Poljšak B, Dahmane R, Jukic T, Pavan Jukić D, Rotim C, Trebše P, Starc A. Prooxidant activities of antioxidants and their impact on health. Acta Clinica Croatica. 2019; 58(4): 726–736. doi: 10.20471/acc.2019.58.04.20
37.    Commandeur JNM,  Vermeulen NPE. Cytotoxicity and cytoprotective activities of natural compounds, the case of curcumin. Xenobiotica. 1996: 26(7): 667–680. DOI: 10.3109/00498259609046741
38.    Nagaoka S, Kakiuchi T, Ohara K, Mukai K. Kinetics of the reaction by which natural vitamin E is regenerated by vitamin C. Chemistry and Physics of Lipids. 2007; 146(1): 26–32. DOI: 10.1016/j.chemphyslip.2006.12.001
39.    Feng J-Y, and Liu Z-Q. Phenolic and enolic hydroxyl groups in curcumin: which plays the major role in scavenging radicals?. Journal of Agricultural and Food Chemistry. 2009; 57(22): 11041–11046. DOI: 10.1021/jf902244g
40.    Santos JS, Tavares, GD,  Barradas TN. Vitamin E and derivatives in skin health promotion. Biochemistry, 2021.  
41.    Desai J, and Mallya R. A review on novel topical formulations of vitamins. Journal of Reports in Pharmaceutical Sciences. 2021; 10(2): 159-170.
42.    Suwanti IS. 2015. Sintesis dan uji antioksidan senyawa tetrahidropentagamavunon-5 dengan metode penangkapan radikal DPPH dan reduksi ion feri. Skripsi. Yogyakarta: Fakultas Farmasi UGM.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available