Author(s): Fenita Shoviantari, Tristiana Erawati Munandar, Widji Soeratri, Mahardian Rahmadi, Inayah Dian Wulandari

Email(s): tristiana-e-m@ff.unair.ac.id

DOI: 10.52711/0974-360X.2025.00292   

Address: Fenita Shoviantari1,4, Tristiana Erawati Munandar2,3*, Widji Soeratri2,3, Mahardian Rahmadi2,3, Inayah Dian Wulandari4
1Doctoral Program of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Gedung Nanizar Zaman Joenoes Kampus C UNAIR Jalan Mulyorejo Surabaya, East Java, Indonesia, 60115.
2Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Gedung Nanizar Zaman Joenoes Kampus C UNAIR Jalan Mulyorejo Surabaya, East Java, Indonesia, 60115.
3Skin and Cosmetic Technology (SCT) Center of Excellent, Universitas Airlangga, Gedung Nanizar Zaman Joenoes Kampus C UNAIR Jalan Mulyorejo Surabaya, East Java, Indonesia, 60115.
4Faculty of Pharmacy, Institut Ilmu Kesehatan Bhakti Wiyata, Jalan KH Wahid Hasyim 65 Kediri, East Java, Indonesia, 64117.
*Corresponding Author

Published In:   Volume - 18,      Issue - 5,     Year - 2025


ABSTRACT:
Butterfly pea (Clitoria ternatea) is a plant that has been widely studied as an antioxidant. Antioxidants are compounds that are believed to have various activities, one of which is that they can be used as whitening agents on the skin. The antioxidant ability of water extract of butterfly pea flower is thought to come from the anthocyanin component in the flowers. The objective of this research is to determine the inhibitory activity of the enzyme tyrosinase from 5 of the most abundant anthocyanins in water extracts of butterfly pea flowers. The method of this study, docking of test compounds against target receptors, was carried out using the Autodock Tools and Autodock 4.2 programs. From the results of molecular Docking, it was found that the five most abundant anthocyanins from butterfly pea flowers were Cyanidin 3-(p-coumaroyl)-glucoside, Cyanidin-3-(p-coumaroyl)-rutinoside-5-glucoside, Delphinidin-3-O-(6- p- coumaroyl)glucoside, Delphinidin-3-(p-coumaroyl)-rutinoside-5-glucoside, and Delphinidin 3-O-glucoside have the same activity as hydroquinone as anti-melanogenesis when viewed from the ?G, Ki, and residue similarity values amino acids that interact with the ligand. However, Delphinidin-3-O-(6-p-coumaroyl) glucoside has the lowest ?G value of -9.23 kcal/mol with a Ki of 170.82nM compared to hydroquinone and other test compounds.


Cite this article:
Fenita Shoviantari, Tristiana Erawati Munandar, Widji Soeratri, Mahardian Rahmadi, Inayah Dian Wulandari. Molecular Docking Anti Melanogenesis Activity of Anthocyanins from Butterfly Pea (Clitoria ternatea) Flower Water Extract. Research Journal of Pharmacy and Technology. 2025;18(5):2043-8. doi: 10.52711/0974-360X.2025.00292

Cite(Electronic):
Fenita Shoviantari, Tristiana Erawati Munandar, Widji Soeratri, Mahardian Rahmadi, Inayah Dian Wulandari. Molecular Docking Anti Melanogenesis Activity of Anthocyanins from Butterfly Pea (Clitoria ternatea) Flower Water Extract. Research Journal of Pharmacy and Technology. 2025;18(5):2043-8. doi: 10.52711/0974-360X.2025.00292   Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-5-15


REFERENCES:
1.    Burger P, Landreau A, Azoulay S, Michel T, Fernandez X. Skin whitening cosmetics: Feedback and challenges in the development of natural skin lighteners. Cosmetics. 2016; 3(4). doi:10.3390/cosmetics3040036
2.    Shaikh G, Deshmukh G. A Review on Anti-ageing and Whitening effect. Res J Pharm Technol. 2019; 12(10): 5059. doi:10.5958/0974-360X.2019.00878.3
3.    Xekardakis D, Krueger-Krasagakis S, Krasagakis K. The melanocyte and melaninogenesis. In: Rigopoulos D, Katoulis AC, eds. Hyperpigmentation. 1st ed. CRC Press; 2017.
4.    Iqbal S, Ismail F. Identification of fungal melanin production and the role of anti-melanin agents. Pak J Pharm Sci. 2023; 36(5): 1483-1488. doi:10.36721/PJPS.2023.36.5.REG.1483-1488.1
5.    Enguita FJ, Leitão AL. Hydroquinone: Environmental Pollution, Toxicity, and Microbial Answers. Biomed Res Int. 2013; 2013: 1-14. doi:10.1155/2013/542168
6.    Huang J, Zhao M, Li X, et al. The Cytotoxic Effect of the Benzene Metabolite Hydroquinone is Mediated by the Modulation of MDR1 Expression via the NF-κB Signaling Pathway. Cellular Physiology and Biochemistry. 2015; 37(2): 592-602. doi:10.1159/000430379
7.    D. Dhangar P, Shimpi H, Newadkar R, Bhadane V, Desale L, Jaiswal N. Formulation and Evaluation of Herbal Extract of Butterfly Pea Multipurpose Cream. Research Journal of Topical and Cosmetic Sciences. Published online November 28, 2023: 85-90. doi:10.52711/2321-5844.2023.00013
8.    Firmansyah D, Indriaty S, Sumiwi SA, Saptarini NM, Levita J. Microphthalmia Transcription Factor almost Thirty Years after: Its Role in Melanogenesis and its Plant-Derived Inhibitors. Res J Pharm Technol. Published online June 28, 2022: 2825-2830. doi:10.52711/0974-360X.2022.00472
9.    Londhe SS, Bhosale angesh G, Joshi AA. Formulation and evaluation of skin whitening- lightening herbal facewash. Asian Journal of Pharmacy and Technology. 2020; 10(4): 245-249. doi:10.5958/2231-5713.2020.00041.0
10.    Suarna W, Wijaya MS. Butterfly pea (clitoria ternatea L.: Fabaceae) and its morphological variations in Bali. J Trop Biodivers Biotechnol. 2021; 6(2). doi:10.22146/JTBB.63013
11.    Jadhav R V., Bhujbal SS. Effect of Copigmentation on Thermal Stability of Hibiscus sabdariffa anthocyanins. Res J Pharm Technol. 2019; 12(6): 2949. doi:10.5958/0974-360X.2019.00496.7
12.    Marpaung AM, Lee M, Kartawiria IS. The Development of Butterfly pea (Clitoria ternatea) Flower Powder Drink by Co-crystallization. Indonesian Food Science and Technology Journal. 2020; 3(2): 34-37. doi:10.22437/ifstj.v3i2.10185
13.    Oguis GK, Gilding EK, Jackson MA, Craik DJ. Butterfly Pea (Clitoria ternatea), a Cyclotide-Bearing Plant With Applications in Agriculture and Medicine. Front Plant Sci. 2019; 10. doi:10.3389/fpls.2019.00645
14.    Karunarathne W, Molagoda I, Park S, et al. Anthocyanins from Hibiscus syriacus L. Inhibit Melanogenesis by Activating the ERK Signaling Pathway. Biomolecules. 2019; 9(11): 645. doi:10.3390/biom9110645
15.    Thuy NM, Minh VQ, Ben TC, Nguyen MTT, Ha HTN, Van Tai N. Identification of anthocyanin compounds in butterfly pea flowers (Clitoria ternatea L.) by ultra performance liquid chromatography/ultraviolet coupled to mass spectrometry. Molecules. 2021; 26(15). doi:10.3390/molecules26154539
16.    S. Patil V, A. Patil P. Molecular Docking: A useful approach of Drug Discovery on the Basis of their Structure. Asian Journal of Pharmaceutical Research. Published online September 7, 2023: 191-195. doi:10.52711/2231- 5691.2023.00036
17.    Pawar S, Kulkarni C, Gadade P, et al. Molecular Docking using different Tools. Asian Journal of Pharmaceutical Research. Published online November 22, 2023: 292-296. doi:10.52711/2231-5691.2023.00053
18.    Goldfeder M, Kanteev M, Isaschar-Ovdat S, Adir N, Fishman A. Determination of tyrosinase substrate-binding modes reveals mechanistic differences between type-3 copper proteins. Nat Commun. 2014; 5. doi:10.1038/ncomms5505
19.    Kontoyianni M, McClellan LM, Sokol GS. Evaluation of Docking Performance: Comparative Data on Docking Algorithms. J Med Chem. 2004; 47(3): 558-565. doi:10.1021/jm0302997
20.    Liu YY, Feng XY, Jia WQ, Jing Z, Xu WR, Cheng XC. Identification of novel PI3Kδ inhibitors by docking, ADMET prediction and molecular dynamics simulations. Comput Biol Chem. 2019; 78: 190-204. doi:10.1016/j.compbiolchem.2018.12.002
21.    Lipinski CA. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 2004; 1(4): 337-341. doi:10.1016/j.ddtec.2004.11.007
22.    Ta GH, Weng CF, Leong MK. In silico Prediction of Skin Sensitization: Quo vadis? Front Pharmacol. 2021; 12. doi:10.3389/fphar.2021.655771
23.    Nazir Y, Rafique H, Roshan S, et al. Molecular Docking, Synthesis, and Tyrosinase Inhibition Activity of Acetophenone Amide: Potential Inhibitor of Melanogenesis. Biomed Res Int. 2022; 2022: 1-10. doi:10.1155/2022/1040693
24.    Du X, Li Y, Xia Y, Ai S, Liang J, Sang P, Ji XL, Liu S. Insights into Protein–Ligand Interactions: Mechanisms, Models, and Methods. Int J Mol Sci. 2016; 26; 17(2): 144. doi: 10.3390/ijms17020144

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available