Author(s): Kalyani Thombre, Arpita Umap, Krishna Gupta, Milind Umekar

Email(s): krg1903@gmail.com

DOI: 10.52711/0974-360X.2025.00272   

Address: Kalyani Thombre, Arpita Umap, Krishna Gupta*, Milind Umekar
Department of Pharmaceutical Chemistry, Smt. Kishoritai Bhoyar College of Pharmacy, New Kmaptee, Nagpur (MS).
*Corresponding Author

Published In:   Volume - 18,      Issue - 4,     Year - 2025


ABSTRACT:
Within pharmaceutical manufacturing, crystallization is one of the most extensively used and vital unit operation. Mass transfer of a solute from a liquid solution to a pure solid is known as crystallization, and it is a chemical process of solid-liquid separation. It is the result of particles rapidly arranging themselves into regular geometric patterns or repetitive order. Because it combines particle generating and purification into a single process, crystallization is a beneficial isolation step for manufacturing. Nearly all products developed involving fine chemicals, such colors, explosives, and photographic materials, need to crystallize during manufacturing operations, and over 90% of pharmaceutical products contains bioactive medicinal product items and excipients in crystalline solid form. Without acquiring supersaturation crystallization of particle not achieve. There are many types of crystallization equipment, which are often developed on the basis of methods of achieving supersaturation and suspending growing crystals. Probably the most important characteristics governing crystallization is size, shape, hardness and impurities. in crystals because all crystallization techniques involve the purification of drugs with improved physiochemical properties. A crucial process in a variety of pharmaceutical uses is crystallization. Purification, enhanced processing traits, enhanced physical stability, ease of handling, enhanced chemical stability, prolonged release, and separation of entrapped constituents are the primary drivers of crystallization.


Cite this article:
Kalyani Thombre, Arpita Umap, Krishna Gupta, Milind Umekar. Kalyani Thombre, Arpita Umap, Krishna Gupta, Milind Umekar. Research Journal of Pharmacy and Technology. 2025;18(4):1906-2. doi: 10.52711/0974-360X.2025.00272

Cite(Electronic):
Kalyani Thombre, Arpita Umap, Krishna Gupta, Milind Umekar. Kalyani Thombre, Arpita Umap, Krishna Gupta, Milind Umekar. Research Journal of Pharmacy and Technology. 2025;18(4):1906-2. doi: 10.52711/0974-360X.2025.00272   Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-4-63


7. REFERENCES:
1.    Helmenstine, Anne Marie. Crystallization Definition. Thought Co, Aug. 29, 2020, thoughtco.com/definition-of-crystallize-605854.
2.    Reviewed by BD editors, Crystallization, April 22, 2018.
3.    Bunaciu AA, UdriŞTioiu EG, Aboul-Enein HY. X-ray diffraction: instrumentation and applications. Critical Reviews in Analytical Chemistry. 2015; Oct 2; 45(4): 289-99.
4.    Smyth MS, Martin JH. x Ray crystallography. Molecular Pathology. 2000; Feb; 53(1): 8.
5.    Blundell TL, Patel S. High-throughput X-ray crystallography for drug discovery. Current Opinion in Pharmacology. 2004; Oct 1; 4(5): 490-6.
6.    Spiliopoulou M, Valmas A, Triandafillidis DP, Kosinas C, Fitch A, Karavassili F, Margiolaki I. Applications of X-ray powder diffraction in protein crystallography and drug screening. Crystals. 2020 Jan 21; 10(2): 54.
7.    Schiele, S. A., Bier, R., Ommert, A., and Briesen, H. (2023). Direct Crystal Growth Control: Controlling Crystallization Processes by Tracking an Analogue Twin. Industrial and Engineering Chemistry Research. https://doi.org/10.1021/acs.iecr.2c04648
8.    Guo M, Sun X, Chen J, Cai T. Pharmaceutical cocrystals: A review of preparations, physicochemical properties and applications. Acta Pharmaceutica Sinica B [Internet]. 2021; Aug 1; 11(8): 2537–64. Available from: https://doi.org/10.1016/j.apsb.2021.03.030
9.    Kramer HJM, Van Rosmalen GM. CRYSTALLIZATION. In: Elsevier eBooks [Internet]. 2000. p. 64–84. Available from: https://doi.org/10.1016/b0-12-226770-2/00031-4
10.    Cressey, G.; Mercer, I.F. (1999). Crystals. London. Natural History Museum.
11.    Praveen Chaudhari, Pravin Uttekar, Nishant Waria, Amit Ajab. Study of Different Crystal Habits Formed by Recrystallization Process and Study Effect of Variables. Research J. Pharm. and Tech. 2008; 1(4): Oct.-Dec. 381-385. Available from:
12.    Pevelen DDL. 8.4 Physical separations: Solid-State forms and habits of chiral substances. In: Elsevier eBooks. 2012. p. 54–62. Available from: https://doi.org/10.1016/b978-0-08-095167-6.00813-2
13.    Okuno T. A review of: “Crystals and Crystal Structures, by Richard Tilley.” Molecular Crystals and Liquid Crystals. 2007; 469(1): 131–2. Available from: https://doi.org/10.1080/15421400701431661
14.    Linnikov OD. Mechanism of precipitate formation during spontaneous crystallization from supersaturated aqueous solutions. Russian Chemical Reviews. 2014; 83(4): 343–64. Available from: https://doi.org/10.1070/rc2014v083n04abeh004399
15.    Supersaturation crystallization, Methods of Supersaturation, https://www.chemicalslearning.com/2022/07/supersaturation-methods-of.html  
16.    David Williamson, Stages or Process of Crystallization. 2021
17.    Vekilov PG. Nucleation. Crystal Growth and Design [Internet]. 2010; 10(12):5007–19. Available from: https://doi.org/10.1021/cg1011633
18.    Wan Nur Athirah Mazli, Mohd Afnan Ahmad and Shafirah Samsuri, 2019 eISBN: 978-1-78801-358-1 DOI: 10.5772/intechopen.90164.    
19.    Barrett M, McNamara M, Hao H, Barrett P, Glennon B. Supersaturation tracking for the development, optimization and control of crystallization processes. Process Safety and Environmental Protection/ Transactions of the Institution of Chemical Engineers Part B, Process Safety and Environmental Protection/Chemical Engineering Research and Design/Chemical Engineering Research and Design. 2010; 88(8): 1108–19. Available from: https://doi.org/10.1016/j.cherd.2010.02.010
20.    Wan Nur Athirah Mazli, Mohd Afnan Ahmad and Shafirah Samsuri, 2019 eISBN: 978-1-78801-358-1 DOI: 10.5772/intechopen.90164  
21.    Bian C, Chen H, Song X, Yu J. Metastable zone width and the primary nucleation kinetics for cooling crystallization of NaNO3 from NaCl-NaNO3-H2O system. Journal of Crystal Growth. 2019; 518:5-13
22.    John McGinty, Nima Yazdanpanah, Chris Price, Joop H. ter Horst and Jan Sefcik, Chapter 1: Nucleation and Crystal Growth in Continuous Crystallization† , in The Handbook of Continuous Crystallization, 2020, pp. 1-50 DOI: 10.1039/9781788013581-00001
23.    Fersht AR. Nucleation mechanisms in protein folding. Current Opinion in Structural Biology. 1997;7(1):3-9
24.    Xue J et al. Secondary nucleation and growth kinetics of aluminum hydroxide crystallization from potassium aluminate solution. Journal of Crystal Growth. 2019; 507:232-240
25.    Gavezzotti A. Organic crystal nucleation and growth: Little knowledge, much mystery. In: Theoretical and Computational Chemistry. 2021. p. 201–29. Available from: https://doi.org/10.1016/b978-0-12-823747-2.00004-4
26.    Vigneron JP, Lousse V. Variation of a photonic crystal color with the Miller indices of the exposed surface. Proceedings of SPIE, the International Society for Optical Engineering/Proceedings of SPIE. 2006; Available from: https://doi.org/10.1117/12.646835
27.    Wood EA. Vocabulary of surface crystallography. Journal of Applied Physics. 1964; 35(4): 1306–12. Available from: https://doi.org/10.1063/1.1713610
28.    Schwarzenbach D. Note on Bravais–Miller indices. Journal of Applied Crystallography. 2003; 36(5): 1270–1. Available from: https://doi.org/10.1107/s0021889803014778
29.    X-Ray diffraction: A practical approach. Choice/Choice Reviews. 1999; 36(06): 36-3382. Available from: https://doi.org/10.5860/choice.36-3382
30.    Crystals and crystal structures. Materials Today [Internet]. 2006; 9(9):51. Available from: https://doi.org/10.1016/s1369-7021(06)71624-8
31.    Sun S, Zhang X, Cui J, Liang S. Identification of the Miller indices of a crystallographic plane: a tutorial and a comprehensive review on fundamental theory, universal methods based on different case studies and matters needing attention. Nanoscale [Internet]. 2020 Jan 1;12(32):16657–77. Available from: https://doi.org/10.1039/d0nr03637d
32.    Bunaciu AA, Udriştioiu EG, Aboul-Enein HY. X-Ray diffraction: instrumentation and applications. Critical Reviews in Analytical Chemistry. 2015; 45(4): 289–99. Available from: https://doi.org/10.1080/10408347.2014.949616
33.    Smyth MS. x Ray crystallography. Molecular Pathology. 2000; 53(1):8–14. Available from: https://doi.org/10.1136/mp.53.1.8
34.    Kermani AA, Aggarwal S, Ghanbarpour A. Advances in X-ray crystallography methods to study structural dynamics of macromolecules. In: Elsevier eBooks. 2023. p. 309–55. Available from: https://doi.org/10.1016/b978-0-323-99127-8.00020-9
35.    Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, et al. Crystallography and NMR System: A New Software Suite for Macromolecular Structure Determination. Acta Crystallographica Section D, Biological Crystallography. 1998; 54(5):905–21. Available from: https://doi.org/10.1107/s0907444998003254
36.    Neutze R, Wouts R, Van Der Spoel D, Weckert E, Hajdu J. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature. 2000; 406(6797): 752–7. Available from: https://doi.org/10.1038/35021099
37.    Rodríguez I, Gautam R, Tinoco AD. Using x-ray diffraction techniques for biomimetic drug development, formulation, and polymorphic characterization. Biomimetics. 2020; 6(1):1. Available from: https://doi.org/10.3390/biomimetics6010001
38.    Bergese P, Colombo I, Gervasoni D, Depero LE. Assessment of the X-ray diffraction–absorption method for quantitative analysis of largely amorphous pharmaceutical composites. Journal of Applied Crystallography. 2003; 36(1): 74–9. Available from: https://doi.org/10.1107/s002188980201926x
39.    Chernyshev VV. Structural Characterization of Pharmaceutical Cocrystals with the Use of Laboratory X-ray Powder Diffraction Patterns. Crystals [Internet]. 2023; Apr 9; 13(4): 640. Available from: https://doi.org/10.3390/cryst13040640
40.    Carvalho AL, Trincão J, Romão MJ. X-Ray crystallography in drug discovery. In: Methods in Molecular Biology. 2009. p. 31–56. Available from: https://doi.org/10.1007/978-1-60761-244-5_3
41.    Maveyraud L, Mourey L. Protein x-ray crystallography and drug discovery. Molecules/Molecules Online/ Molecules Annual. 2020; 25(5): 1030. Available from: https://doi.org/10.3390/molecules25051030
42.    Mazzorana M, Shotton EJ, Hall DR. A comprehensive approach to X-ray crystallography for drug discovery at a synchrotron facility — The example of Diamond Light Source. Drug Discovery Today Technologies. 2020; 37:83–92. Available from: https://doi.org/10.1016/j.ddtec.2020.10.003
43.    Panzade P, Wagh A, Harale P, Bhilwade S. Pharmaceutical cocrystals: a rising star in drug delivery applications. Journal of Drug Targeting. 2024; 32(2):115–27. Available from: https://doi.org/10.1080/1061186x.2023.2300690
44.    Kumar R, Moche M, Winblad B, Pavlov PF. Combined x-ray crystallography and computational modeling approach to investigate the Hsp90 C-terminal peptide binding to FKBP51. Scientific Reports. 2017; 7(1). Available from: https://doi.org/10.1038/s41598-017-14731-z
45.    Hough MA, Prischi F, Worrall J a. R. Perspective: Structure determination of protein-ligand complexes at room temperature using X-ray diffraction approaches. Frontiers in Molecular Biosciences. 2023; 10. Available from: https:// doi.org/ 10.3389 /fmolb.2023.1113762
46.    Hansch C, Li R, Blaney JM, Langridge R. Comparison of the inhibition of Escherichia coli and Lactobacillus casei dihydrofolate reductase by 2,4-diamino-5-(substituted-benzyl)pyrimidines: quantitative structure-activity relationships, x-ray crystallography, and computer graphics in structure-activity analysis. Journal of Medicinal Chemistry [Internet]. 1982; 25(7):777–84. Available from: https://doi.org/10.1021/jm00349a003
47.    Bunaciu AA, Udriştioiu EG, Aboul-Enein HY. X-Ray diffraction: instrumentation and applications. Critical Reviews in Analytical Chemistry. 2015; 45(4):289–99. Available from: https://doi.org/10.1080/10408347.2014.949616
48.    Roberts SNC, Williams AC, Grimsey IM, Booth SW. Quantitative analysis of mannitol polymorphs. X-ray powder diffractometry—exploring preferred orientation effects. Journal of Pharmaceutical and Biomedical Analysis. 2002; 28(6):1149–59. Available from: https://doi.org/10.1016/s0731-7085(02)00053-5
49.    Newman AW, Byrn SR. Solid-state analysis of the active pharmaceutical ingredient in drug products. Drug Discovery Today. 2003; 8(19): 898–905. Available from: https://doi.org/10.1016/s1359-6446(03)02832-0
50.    Ahn H. Second generation patents in pharmaceutical innovation. 2014. Available from: https://doi.org/10.5771/9783845250861
51.    Sarmah KK, Sarma P, Rao DR, Gupta P, Nath NK, Arhangelskis M, et al. Mechanochemical synthesis of olanzapine salts and their hydration stability study using powder x-ray diffraction. Crystal Growth and Design. 2018; 18(4): 2138–50. Available from: https://doi.org/10.1021/acs.cgd.7b01593
52.    Yonemochi E, Hoshino T, Yoshihashi Y, Terada K. Evaluation of the physical stability and local crystallization of amorphous terfenadine using XRD–DSC and micro-TA. Thermochimica Acta. 2005; 432(1): 70–5. Available from: https://doi.org/10.1016 /j.tca.2005.02.023
53.    Braham Dutt, Manjusha Choudhary, Vikas Budhwar. Enhancement of Stability profile of Aspirin through Cocrystallization Technique. Research Journal of Pharmacy and Technology. 2022; 15(2): 768-2. Available from: 10.52711/0974-360X.2022.00081
54.    Madhuri Gaddam, Nagaraju Ravouru. A Crystal Engineering design to enhance the Solubility, Dissolution, Stability and Micromeritic properties of Omeprazole via Co-crystallization Techniques. Research J. Pharm. and Tech. 2021; 14(1): 356-362. Available from: 10.5958/0974-360X.2021.00001.9
55.    Thimmasetty J, Shashank NN, Abdul Raheem T, Shwetha SKK, Tanmoy G. Modafinil Cocrystals for Altered Physicochemical Properties. Research Journal of Pharmacy and Technology. 2021; 14(9): 4891-6. Available from: 10.52711/0974-360X.2021.00850


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available