Author(s): Smita Kumbhar, Mohini Salunke, Balaji Wakure

Email(s): smitakumbhar@gmail.com , mohinisalunke82@gmail.com , balaji.wakure@gmail.com

DOI: 10.52711/0974-360X.2025.00271   

Address: Smita Kumbhar1*, Mohini Salunke2, Balaji Wakure3
1Department of Pharmaceutical Chemistry, Sanjivani College of Pharmaceutical Education and Research (Autonomous), Kopargaon - 423603, Maharashtra, India.
2Department of Pharmacognosy, Vilasrao Deshmukh Foundation, Group of Institutions, VDF School of Pharmacy, Latur - 413531, Maharashtra, India.
3Department of Pharmaceutics, Vilasrao Deshmukh Foundation, Group of Institutions, VDF School of Pharmacy, Latur - 413531, Maharashtra, India.
*Corresponding Author

Published In:   Volume - 18,      Issue - 4,     Year - 2025


ABSTRACT:
Nanophytosomes are an innovative technology designed to improve the delivery and effectiveness of herbal bioactive compounds. These tiny vesicles, made of phospholipids, encapsulate herbal phytoconstituents, enhancing their application in drug delivery, nutraceuticals, cosmeceuticals, and biomedical fields. Recent advances in nanophytosome technology have focused on developing formulation strategies, characterization methods, and exploring therapeutic applications. Research highlights include their ability to improve bioavailability, enable targeted delivery, enhance stability, and reduce toxicity of herbal compounds. Nanophytosomes excel in transporting poorly water-soluble phytoconstituents, tackling challenges like low solubility and fast metabolism. They ensure precise drug delivery to targeted sites, reducing side effects and boosting therapeutic efficacy. Characterization methods such as dynamic light scattering, transmission electron microscopy, and zeta potential analysis elucidate nanophytosomes' size, shape, surface charge, and stability. Studies on encapsulation efficiency help optimize formulations by understanding the loading and release behaviors of the bioactives. Therapeutically, nanophytosomes show promise in anti-inflammatory, antioxidant, neuroprotective, anticancer, and immunomodulatory domains, finding uses in pharmaceuticals, nutraceuticals, and functional foods. Future research will likely pivot towards personalized medicine, combination therapies, and refining delivery systems, with a focus on meeting regulatory standards for clinical adoption. Nanophytosomes stand out as a versatile and potent platform for enhancing the delivery of herbal compounds, significantly benefiting health and wellness.


Cite this article:
Smita Kumbhar, Mohini Salunke, Balaji Wakure. Nanostructured Phytosomes: Revolutionizing Herbal Compound Delivery, Therapeutic Applications, Current Achievements and Future Perspectives. Research Journal of Pharmacy and Technology. 2025;18(4):1899-5. doi: 10.52711/0974-360X.2025.00271

Cite(Electronic):
Smita Kumbhar, Mohini Salunke, Balaji Wakure. Nanostructured Phytosomes: Revolutionizing Herbal Compound Delivery, Therapeutic Applications, Current Achievements and Future Perspectives. Research Journal of Pharmacy and Technology. 2025;18(4):1899-5. doi: 10.52711/0974-360X.2025.00271   Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-4-62


REFERENCES:
1.    Wang L. Yao Y. Ni Y. et al. Nanophytosome, a nanoscale delivery system for plant extracts. 2020; 25: 629. doi:10.3390/molecules25030629
2.    Aqil F. Munagala R. Jeyabalan J. et al. Nanoformulations of plant extracts in cancer therapy: Emphasis on phytochemical characterization, drug delivery, pharmacokinetics and pharmacodynamics. 2016; 240: 504-516. doi:10.1016/j.jconrel.2016.01.033
3.    Siddiqui IA. Sanna V. Ahmad N. et al. Nanophytomedicine as a potential adjuvant therapy for COVID-19. 2020; 10:979. doi:10.3390/nano10050979
4.    Kumar A. Malviya R. Sharma P. et al. Nanophytosomal delivery: A review on novel approach. Drug Delivery. 2019; 26: 231-244. doi:10.1080/10717544.2019.1602323
5.    Goyal AK. Kumar S. Nagpal M. et al. Nanophytosomes: Emerging trend in herbal drug delivery. Pharmaceutical Nanotechnology. 2017; 5: 155-170. doi:10.2174/2211738505666170310110508
6.    Chandra S. Rawat D. S. Nanophytosomes: A potential nanocarrier for efficient delivery of phytoconstituents. Recent Patents on Drug Delivery. 2020; 14: 222-235. doi:10.2174/1872211314666200710163534
7.    Singh S. Verma N. Malviya R. Nanophytosomes: A recent advancement in phyto-nanotechnology for better therapeutics. Nanomaterials and Nanotechnology. 2021; 11: 18479804211015246. doi:10.1177/18479804211015246
8.    Elhissi A. Ahmed W. Hassan IU. et al. Carbon dioxide-based phytosome processing for nanoscale encapsulation of phytochemicals. International Journal of Pharmaceutics. 2017; 534: 32-39. doi:10.1016/j.ijpharm.2017.10.030
9.    Verma N. Singh S. Malviya R. Nanophytosomes: A novel perspective for drug delivery systems. 2020; 10: 119-127. doi:10.2174/2210303109666191204162626
10.    Andishmand H. Yousefi M. Jafari N. et al. Designing and fabrication of colloidal nano-Phytosomes with gamma-oryzanol and phosphatidylcholine for encapsulation and delivery of polyphenol-rich extract from pomegranate peel. International Journal. 2024; 256: 128501. doi:10.1016/j.ijpharm.2024.128501
11.    Neslihan D. Ozdemir S. Uzuner K. et al. Characterization of pomegranate peel extract loaded nanoPhytosomes and the enhancement of bio-accessibility and storage stability. Food Chemistry. 2023; 398: 133921. doi:10.1016/j.foodchem.2023.133921
12.    Soltanzadeh M. Peighambardoust S. Ghanbarzadeh B. et al. Chitosan Nanoparticles as a Promising Nanomaterial for Encapsulation of Pomegranate (Punica granatum L.) Peel Extract as a Natural Source of Antioxidants. Nanomaterials (Basel, Switzerland). 2021; 11: 1439. doi:10.3390/nano11051439
13.    Human C. Aucamp M. DeBeer D. et al. Food-grade Phytosomes vesicles for nanoencapsulation of labile C-glucosylated xanthones and dihydrochalcones present in a plant extract matrix-Effect of process conditions and stability assessment. Food Science and Nutrition. 2023; 11: 8093-8111. doi:10.1002/fsn3.3328
14.    Ortega-Pérez LG. Ayala-Ruiz LA. Magaña R. et al. Development and Evaluation of Phytosomes Containing Callistemon citrinus Leaf Extract: A Preclinical Approach for the Treatment of Obesity in a Rodent Model. Pharmaceutics. 2023; 15: 2178. doi:10.3390/pharmaceutics15082178
15.    Abdelkader H. Longman MR. Alany RG. et al. Phytosomes-hyaluronic acid systems for ocular delivery of L-carnosine. International Journal of Nanomedicine. 2016; 11: 2815-2827. doi:10.2147/IJN.S102519
16.    Jain P. Taleuzzaman M. Kala C. et al. Quality by design (Qbd) assisted development of phytosomal gel of aloe vera extract for topical delivery. Journal of Liposome Research. 2021; 31: 381-388. doi:10.1080/08982104.2021.1930605
17.    Chen RP. Chavda VP. Patel AB. et al. Phytochemical Delivery Through Transferosome (Phytosomes): An Advanced Transdermal Drug Delivery for Complementary Medicines. Frontiers in Pharmacology. 2022; 13: 850862. doi:10.3389/fphar.2022.850862
18.    Li Y. Wu H. Jia M. et al. Therapeutic effect of folate-targeted and PEGylated Phytosomes loaded with a mitomycin C-soybean phosphatidylcholine complex. Molecular Pharmaceutics. 2014; 11: 3017-3026. doi:10.1021/mp500325u
19.    Singh D. Rawat M. Semalty A. et al. Rutin-phospholipid complex: An innovative technique in novel drug delivery system- NDDS. Current Drug Delivery. 2012; 9: 305-314. doi:10.2174/156720112800670972
20.    Singh D. Rawat MS. Semalty A. et al. Quercetin-phospholipid complex: An amorphous pharmaceutical system in herbal drug delivery. Current Drug Discovery Technologies. 2012; 9: 17-24. doi:10.2174/157016312800174103
21.    Wang H. Cui Y. Fu Q. et al. A phospholipid complex to improve the oral bioavailability of flavonoids. Drug Development and Industrial Pharmacy. 2015; 41: 1693-1703. doi:10.3109/03639045.2014.970053
22.    Sri KV. Kondaiah A. Ratna JV. et al. Preparation and characterization of quercetin and rutin cyclodextrin inclusion complexes. Drug Development and Industrial Pharmacy. 2007; 33: 245-253. doi:10.1080/03639040701250409
23.    Saoji SD. Raut NA. Dhore PW. et al. Preparation and Evaluation of Phospholipid-Based Complex of Standardized Centella Extract (SCE) for the Enhanced Delivery of Phytoconstituents. The AAPS Journal. 2016; 18: 102-114. doi:10.1208/s12248-016-9813-6
24.    Telange DR. Nirgulkar SB. Umekar MJ. et al. Enhanced transdermal permeation and anti-inflammatory potential of phospholipids complex-loaded matrix film of umbelliferone: Formulation development, physico-chemical and functional characterization. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences. 2019; 131: 23-38. doi:10.1016/j.ejps.2019.01.016
25.    Telange DR. Nirgulkar SB. Umekar MJ. et al. Enhanced transdermal permeation and anti-inflammatory potential of phospholipids complex-loaded matrix film of umbelliferone: Formulation development, physico-chemical and functional characterization. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences. 2019; 131: 23-38. doi:10.1016/j.ejps.2019.01.016
26.    Freag MS. Elnaggar Y. Abdallah OY. et al. Lyophilized phytosomal nanocarriers as platforms for enhanced diosmin delivery: Optimization and ex vivo permeation. International Journal of Nanomedicine. 2013; 8: 2385-2397. doi:10.2147/IJN.S48780
27.    Maramaldi G. Togni S. Pagin I. et al. Soothing and anti-itch effect of quercetin Phytosomes in human subjects: A single-blind study. 2016; 9: 55-62. doi:10.2147/CCID.S101133
28.    Susilawati Y. Chaerunisa AY. Purwaningsih H. et al. Phytosomes drug delivery system for natural cosmeceutical compounds: Whitening agent and skin antioxidant agent. Journal of Advanced Pharmaceutical Technology and Research. 2021; 12: 327-334. doi:10.4103/japtr.japtr_65_21
29.    El-Menshawe SF. Ali AA. Rabeh MA. et al. Nanosized soy Phytosomes-based thermogel as topical anti-obesity formulation: An approach for acceptable level of evidence of an effective novel herbal weight loss product. International Journal of Nanomedicine. 2018; 13: 307-318. doi:10.2147/IJN.S153873
30.    Jang SY. Bae JS. Lee YH. et al. Caffeic acid and quercitrin purified from Houttuynia cordata inhibit DNA topoisomerase I activity. Natural Product Research. 2011; 25: 222-231. doi:10.1080/14786419.2010.508968
31.    Moghaddam AH. Eslami A. Jelodar SK. et al. Preventive effect of quercetin-loaded nanophytosome against autistic-like damage in maternal separation model: The possible role of Caspase-3, Bax/Bcl-2 and Nrf2. Behavioural Brain Research. 2023; 441: 114300. doi:10.1016/j.bbr.2023.114300
32.    Palol VV. Saravanan SK. Vuree S. et al. Nanophytosome formulation of β-1,3-glucan and Euglena gracilis extract for drug delivery applications. Methods X. 2023; 11: 102480. doi:10.1016/j.mex.2023.102480
33.    Al-Samydai A. Qaraleh MA. Alshaer W. et al. Preparation, characterization, wound healing, and cytotoxicity assay of PEGylated nanophytosomes loaded with 6-gingerol. Nutrients. 2022; 14: 5170. doi:10.3390/nu14245170
34.    Babazadeh A. Zeinali M. Hamishehkar H. et al. Nano-Phytosome: A developing platform for herbal anti-cancer agents in cancer therapy. Current Drug Targets. 2018; 19: 170-180. doi:10.2174/1389201819666180219124246
35.    Amjadi S. Shahnaz F. Shokouhi B. et al. Nanophytosomes for enhancement of rutin efficacy in oral administration for diabetes treatment in streptozotocin-induced diabetic rats. International Journal of Pharmaceutics. 2021; 610: 121208. doi:10.1016/j.ijpharm.2021.121208
36.    Neslihan A. Ozdemir S. Uzuner K. et al. Characterization of pomegranate peel extract loaded nanophytosomes and the enhancement of bio-accessibility and storage stability. Food Chemistry. 2023; 398: 133921. doi:10.1016/j.foodchem.2022.133921
37.    Babaei P. Farahpour MR. Tabatabaei ZG. et al. Fabrication of geraniol nanophytosomes loaded into polyvinyl alcohol: A new product for the treatment of wounds infected with methicillin-resistant Staphylococcus aureus. Journal of Tissue Viability. 2023; S0965-206X(23)00112-2. doi:10.1016/j.jtv.2023.03.002
38.    Mendes D. Valentão P. Oliveira MM. et al. A nanophytosomes formulation based on elderberry anthocyanins and Codium lipids to mitigate mitochondrial dysfunctions. Biomedicine and Pharmacotherapy = Biomedecine and Pharmacotherapie. 2021; 143: 112157. doi:10.1016/j.biopha.2021.112157
39.    Darvishi B. Dinarvand R. Mohammadpour H. et al. Dual l-Carnosine/Aloe vera nanophytosomes with synergistically enhanced protective effects against methylglyoxal-induced angiogenesis impairment. Molecular Pharmaceutics. 2021; 18: 3302-3325. doi:10.1021/acs.molpharmaceut.1c00313
40.    Mendes D. Peixoto F. Oliveira MM. et al. Mitochondrial dysfunction in skeletal muscle of rotenone-induced rat model of Parkinson's disease: SC-Nanophytosomes as therapeutic approach. International Journal of Molecular Sciences. 2023; 24: 16787. doi:10.3390/ijms242316787
41.    Goel R. Kumar N. Singh N. et al. Nanoencapsulation and characterisation of Hypericum perforatum for the treatment of neuropathic pain. Journal of Microencapsulation. 2023; 40: 402-411. doi:10.1080/02652048.2023.2222202
42.    Neamatallah T. Malebari AM. Alamoudi AJ. et al. Andrographolide nanophytosomes exhibit enhanced cellular delivery and pro-apoptotic activities in HepG2 liver cancer cells. Drug Delivery. 2023; 30: 2174209. doi:10.1080/10717544.2023.2174209
43.    Fathi F. Ebrahimi SN. Prior J. et al. Formulation of Nano/Micro-Carriers Loaded with an Enriched Extract of Coffee Silverskin: Physicochemical Properties, In Vitro Release Mechanism and In Silico Molecular Modeling. Pharmaceutics. 2022; 14: 112. doi:10.3390/pharmaceutics140100112
44.    Hashemi GH. Eskandari MH. Sadeghi R. et al. Atmospheric Pressure Cold Plasma Modification of Basil Seed Gum for Fabrication of Edible Film Incorporated with Nanophytosomes of Vitamin D3 and Tannic Acid. Foods (Basel, Switzerland). 2022; 12: 71. doi:10.3390/foods12010071
45.    Hsu CC. Yang HT. Ho JJ. et al. Houttuynia cordata aqueous extract attenuated glycative and oxidative stress in heart and kidney of diabetic mice. European Journal of Nutrition. 2016; 55:845-854. doi:10.1007/s00394-015-0931-3
46.    Nair SR. Pilgaonkar VW. Panda VS. et al. Evaluation of antioxidant activity of Ginkgo biloba phytosomes in rat brain. Phytotherapy Research. 2006; 20: 1013-1016. doi:10.1002/ptr.2032
47.    Gnananath K. Sri Nataraj K. Ganga RB. et al. Phospholipid Complex Technique for Superior Bioavailability of Phytoconstituents. Advanced Pharmaceutical Bulletin. 2017; 7: 35-42. doi:10.15171/apb.2017.005
48.    Shariare M. Afnan K. Iqbal F. et al. Development and Optimization of Epigallocatechin-3-Gallate (EGCG) Nano Phytosome Using Design of Experiment (DoE) and Their In Vivo Anti-Inflammatory Studies. Molecules (Basel, Switzerland). 2020; 25:5453. doi:10.3390/molecules25225453
49.    Deleanu M. Toma L. Sanda GM. et al. V. Deleanu C. Săcărescu L. Suciu A. Alexandru G. Crişan I. Popescu M. Stancu C. S. 2023; 15:1066. doi:10.3390/medicines150301066
50.    Matias D. Rijo P. Reis CP. et al. Phytosomes as Biocompatible Carriers of Natural Drugs. Current Medicinal Chemistry. 2017; 24:568-589. doi:10.2174/0929867323666161020104518
51.    Direito R. Reis C. Roque L. et al. Phytosomes with Persimmon (Diospyros kaki L.) Extract: Preparation and Preliminary Demonstration of In Vivo Tolerability. Pharmaceutics. 2019; 11: 296. doi:10.3390/pharmaceutics11020296
52.    El-Menshawe SF. Ali AA. Rabeh MA. et al. Nanosized soy phytosome-based thermogel as topical anti-obesity formulation: An approach for acceptable level of evidence of an effective novel herbal weight loss product. International Journal of Nanomedicine. 2018; 13: 307-318. doi:10.2147/IJN.S150076
53.    Permana AD. Utami RN. Courtenay AJ. et al. Phytosomal nanocarriers as platforms for improved delivery of natural antioxidant and photoprotective compounds in propolis: An approach. 2020; 205: 111846. doi:10.1016/j.jconrel.2020.05.028
54.    Abdelkader H. Longman MR. Alany RG. et al. Phytosome-hyaluronic acid systems for ocular delivery of L-carnosine. International Journal of Nanomedicine. 2016; 11: 2815-2827. doi:10.2147/IJN.S96419
55.    Kim SM. Jung JI. Chai C. et al. Characteristics and Glucose Uptake Promoting Effect of Chrysin-Loaded Phytosomes Prepared with Different Phospholipid Matrices. Nutrients. 2019; 11: 2549. doi:10.3390/nu11112549
56.    Sikarwar MS. Sharma S. Jain AK. et al. Preparation, characterization, and evaluation of Marsupsin-phospholipid complex. AAPS PharmSciTech. 2008; 9: 129-137. doi:10.1208/s12249-008-9011-4
57.    Rondanelli M. Perna S. Gasparri C. et al. Promising Effects of 3-Month Period of Quercetin Phytosome® Supplementation in the Prevention of Symptomatic COVID-19 Disease in Healthcare Workers: A Pilot Study. Life (Basel, Switzerland). 2022; 12: 66. doi:10.3390/life12010066
58.    Costa M. Soares C. Silva A. et al. Characterization of Codium tomentosumphytosomes and their neuroprotective potential, in Proceedings of the 3rd International Electronic Conference on Foods: Food, Microbiome, and Health - A Celebration of the 10th Anniversary of Foods' Impact on Our Wellbeing, 1-15 October. 2022. doi:10.3390/Foods2022-13009
59.    Palachai N. Wattanathorn J. Muchimapura S. et al. Phytosome Loading the Combined Extract of Mulberry Fruit and Ginger Protects against Cerebral Ischemia in Metabolic Syndrome Rats. Oxidative Medicine and Cellular Longevity. 2020. doi:10.1155/2020/2053081
60.    Moghaddam AH. Abbasalipour H. Ranjbar M. et al. Effect of Sumac Nano-phytosome on Memory and Oxidative Stress in Valproic Acid-induced Rat Model of Autism Spectrum Disorder. J. Guilan Univ. Med Sci. 2021; 29: 102-113. doi:10.22038/jgums.2021.55863.2006
61.    Omidfar F. Gheybi F. Davoodi J. et al. Nanophytosomes of hesperidin and of hesperetin: Preparation, characterization, and in vivo evaluation. Biotechnology and Applied Biochemistry. 2023; 70: 846-856. doi:10.1002/bab.2221
62.    Karekar P. Killedar S. Kulkarni S. et al. Design and Optimization of Nanophytosomes Containing Mucuna prureins Hydroalcoholic Extract for Enhancement of Antidepressant Activity. J Pharm Innov. 2023; 18: 310-324. doi:10.1007/s12247-022-09650-8
63.    Wu Z. Deng X. Hu Q. et al. Houttuynia cordata Thunb: An Ethnopharmacological Review. Frontiers in Pharmacology. 2021; 12: 714694. doi:10.3389/fphar.2021.714694
64.    Rafiq S. Hao H. Ijaz M. et al. Pharmacological Effects of Houttuynia cordata Thunb (H. cordata): A Comprehensive Review. Pharmaceuticals (Basel, Switzerland). 2022; 15: 1079. doi:10.3390/ph15081079
65.    Shingnaisui K. Dey T. Manna P. et al. Therapeutic potentials of Houttuynia cordata Thunb. against inflammation and oxidative stress: A review. Journal of Ethnopharmacology. 2018; 220: 35-43. doi:10.1016/j.jep.2018.03.005
66.    Liu Y. Yang G. Yang C. et al. The Mechanism of Houttuynia cordata Embryotoxicity Was Explored in Combination with an Experimental Model and Network Pharmacology. Toxins. 2023; 15: 73. doi:10.3390/toxins15010073
67.    Li W. Fan T. Zhang Y. et al. Houttuynia cordata Thunb. volatile oil exhibited anti-inflammatory effects in vivo and inhibited nitric oxide and tumor necrosis factor-α production in LPS-stimulated mouse peritoneal macrophages in vitro. Phytotherapy Research: PTR. 2013; 27: 1629-1639. doi:10.1002/ptr.4852
68.    Laldinsangi C. The therapeutic potential of Houttuynia cordata: A current review. Heliyon. 2022; 8. doi:10.1016/j.heliyon.2022.e10386
69.    Wang J. Dempsey E. Corr SC. et al. The Traditional Chinese Medicine Houttuynia cordata Thunb decoction alters intestinal barrier function via an EGFR dependent MAPK (ERK1/2) signalling pathway. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology. 2022; 105:154353. doi:10.1016/j.phymed.2022.154353
70.    Ju L. Zhang J. Wang F. et al. Chemical profiling of Houttuynia cordata Thunb. by UPLC-Q-TOF-MS and analysis of its antioxidant activity in C2C12 cells. Journal of Functional Foods. 2021; 204: 114271. doi:10.1016/j.jff.2021.114271
71.    Toda S. Antioxidative effects of polyphenols in leaves of Houttuynia cordata on protein fragmentation by copper-hydrogen peroxide in vitro. Journal of Medicinal Food. 2005; 8: 266-268. doi:10.1089/jmf.2005.8.266
72.    Wang S. Li L. Chen Y. et al. Houttuynia cordata Thunb. alleviates inflammatory bowel disease by modulating intestinal microenvironment: A research review. Frontiers in Immunology. 2023; 14: 1306375. doi:10.3389/fimmu.2023.1306375
73.    Inthi P. Pandith H. Kongtawelert P. et al. Anti-cancer Effect and Active Phytochemicals of Houttuynia cordata Thunb. against Human Breast Cancer Cells. Asian Pacific Journal of Cancer Prevention. 2023; 24: 1265-1274. doi:10.31557/APJCP.2023.24.4.1265
74.    Sarkar S. Kar A. Shaw P. et al. Hydroalcoholic root extracts of Houttuynia cordata (Thunb.) standardized by UPLC-Q-TOF-MS/MS promotes apoptosis in human hepatocarcinoma cell HepG2 via GSK-3β/β-catenin/PDL-1 axis. Fitoterapia. 2023; 171: 105684. doi:10.1016/j.fitote.2023.105684
75.    Prommaban A. Kodchakorn K. Kongtawelert P. et al. Houttuynia cordata Thunb fraction induces human leukemic Molt-4 cell apoptosis through the endoplasmic reticulum stress pathway. Asian Pacific Journal of Cancer Prevention. 2012; 13: 1977-1981. doi:10.7314/APJCP.2012.13.5.1977
76.    Ghosh A. Ghosh B. Parihar N. et al. Nutraceutical prospects of Houttuynia cordata against the infectious viruses. Food Bioscience. 2022; 50: 101977. doi:10.1016/j.fbio.2022.101977
77.    Woranam K. Senawong G. Utaiwat S. et al. Anti-inflammatory activity of the dietary supplement Houttuynia cordata fermentation product in RAW264.7 cells and Wistar rats. PLoS One. 2020; 15. doi:10.1371/journal.pone.0230645
78.    Wong CF. Poon CK. Ng TW. et al. Anti-inflammatory, antipyretic efficacy and safety of inhaled Houttuynia cordata Thunb. essential oil formulation. Journal of Ethnopharmacology. 2022; 297: 115541. doi:10.1016/j.jep.2022.115541
79.    Subhawa S. Naiki-Ito A. Kato H. et al. Suppressive Effect and Molecular Mechanism of Houttuynia cordata Thunb. Extract against Prostate Carcinogenesis and Castration-Resistant Prostate Cancer. Cancers. 2021; 13: 3403. doi:10.3390/cancers13143403
80.    Lin CH. Chao LK. Lin LY. et al. Analysis of Volatile Compounds from Different Parts of Houttuynia cordata Thunb. Molecules (Basel, Switzerland). 2022; 27: 8893. doi:10.3390/molecules27248893
81.    Bahadur GA. Ajmal AM. Lee J. et al. Identification of SARS-CoV-2 inhibitors from extracts of Houttuynia cordata Thunb. Saudi Journal of Biological Sciences. 2021; 28: 7517-7527. doi:10.1016/j.sjbs.2021.04.027
82.    Ma Q. Wei R. Wang Z. et al. Bioactive alkaloids from the aerial parts of Houttuynia cordata. Journal of Ethnopharmacology. 2017; 195: 166-172. doi:10.1016/j.jep.2016.10.024
83.    Kim JH. Baek JS. Park JK. et al. Development of Houttuynia cordata Extract-Loaded Solid Lipid Nanoparticles for Oral Delivery: High Drug Loading Efficiency and Controlled Release. Molecules (Basel, Switzerland). 2017; 22: 2215. doi:10.3390/molecules22122215
84.    Song H. Shen T. Wu J. et al. Extraction and activity of chemical constituents from Houttuynia cordata Thunb by ultrasonic method. Cellular and Molecular Biology. 2022; 67: 281-290. doi:10.5772/cellmolbiol.2022.07.0008
85.    Sekita Y. Murakami K. Yumoto H. et al. Antibiofilm and Anti-Inflammatory Activities of Houttuynia cordata Decoction for Oral Care. Evidence-Based Complementary and Alternative Medicine. 2017; 2850947. doi:10.1155/2017/2850947

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available