Author(s):
Aditya Ghuge, Nupur Ghate, Muskan Prasad, Ajinkya Rane, Gauri Sarap, Nilkamal Waghmare, Amey Deshpande, Vijay Patil
Email(s):
adityadghuge18@gmail.com , ghatenupur13@gmail.com , muskanprasad@gmail.com , ajinkyarane@gmail.com , sarapgauri@gmail.com , nilkamal.waghmare@bvcop.in , amey.deshpande@bvcop.in , vijay.patil@bvcop.in
DOI:
10.52711/0974-360X.2025.00269
Address:
Aditya Ghuge, Nupur Ghate, Muskan Prasad, Ajinkya Rane, Gauri Sarap, Nilkamal Waghmare, Amey Deshpande, Vijay Patil
Bharati Vidyapeeth’s College of Pharmacy, Belapur CBD, Navi Mumbai, Maharashtra, India.
*Corresponding Author
Published In:
Volume - 18,
Issue - 4,
Year - 2025
ABSTRACT:
Acne and hyperpigmentation are two most frequently occurring skin conditions that causes skin damage, inflammation or other skin conditions. Post-inflammatory hyperpigmentation is caused due to acne which can be treated topically. Thus, by considering future consequences of acne, a combined treatment for both diseases will be beneficial. The major barrier for topical administration is permeation through skin which can be overcome by using novel drug delivery techniques based on required particle size and compatibility of drugs. One such method of microencapsulation for betterment of drug delivery can be employed for topical application via transdermal route of skin. This article provides a basic overview of development of a combined formulation that can be used to treat both diseases in the context of consequences of each other. This article focuses on how the acne and hyperpigmentation are correlated and how the treatment and formulation can be developed using novel encapsulation technique along with their benefits. The aim of this article is to prepare a novel formulation which can prevent post-inflammatory hyperpigmentation caused due to acne by using microencapsulation as a method for improvement of drug penetration.
Cite this article:
Aditya Ghuge, Nupur Ghate, Muskan Prasad, Ajinkya Rane, Gauri Sarap, Nilkamal Waghmare, Amey Deshpande, Vijay Patil. A Review on Formulation Development of Microencapsulation Based Drug Delivery System for Topical Application. Research Journal of Pharmacy and Technology. 2025;18(4):1888-2. doi: 10.52711/0974-360X.2025.00269
Cite(Electronic):
Aditya Ghuge, Nupur Ghate, Muskan Prasad, Ajinkya Rane, Gauri Sarap, Nilkamal Waghmare, Amey Deshpande, Vijay Patil. A Review on Formulation Development of Microencapsulation Based Drug Delivery System for Topical Application. Research Journal of Pharmacy and Technology. 2025;18(4):1888-2. doi: 10.52711/0974-360X.2025.00269 Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-4-60
5. REFERENCES:
1. Thiboutot D, Gollnick H, Bettoli V, Dréno B, Kang S, Leyden JJ, et al. New insights into the management of acne: An update from the Global Alliance to Improve Outcomes in Acne Group. Journal of the American Academy of Dermatology. 2009; May; 60(5): S1–50.
2. Dawson AL, Dellavalle RP. Acne vulgaris. BMJ. 2013; May 8; 346(may08 1): f2634–f2634.
3. Mourelatos K, Eady EA, Cunliffe WJ, Clark SM, Cove JH. Temporal changes in sebum excretion and propionibacterial colonization in preadolescent children with and without acne. Br J Dermatol. 2007; Jan; 156(1): 22–31.
4. Ehrmann DA. Polycystic ovary syndrome. N Engl J Med. 2005; Mar 24; 352(12): 1223–36.
5. Chen MJ, Chen CD, Yang JH, Chen CL, Ho HN, Yang WS, et al. High serum dehydroepiandrosterone sulfate is associated with phenotypic acne and a reduced risk of abdominal obesity in women with polycystic ovary syndrome. Human Reproduction. 2011; Jan 1; 26(1): 227–34.
6. Knor T. The pathogenesis of acne. Acta Dermatovenerol Croat. 2005; 13(1): 44–9.
7. Suzuki N, Suzuki S, Duncan GS, Millar DG, Wada T, Mirtsos C, et al. Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4. Nature. 2002; Apr; 416(6882): 750–4.
8. Takeda K, Kaisho T, Akira S. Toll-Like Receptors. Annu Rev Immunol. 2003; Apr; 21(1): 335–76.
9. Medzhitov R, Preston-Hurlburt P, Janeway CA. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 1997; Jul; 388(6640): 394–7.
10. Girardin SE, Boneca IG, Carneiro LAM, Antignac A, Jéhanno M, Viala J, et al. Nod1 Detects a Unique Muropeptide from Gram-Negative Bacterial Peptidoglycan. Science. 2003; Jun 6; 300(5625): 1584–7.
11. Girardin SE, Travassos LH, Hervé M, Blanot D, Boneca IG, Philpott DJ, et al. Peptidoglycan Molecular Requirements Allowing Detection by Nod1 and Nod2. Journal of Biological Chemistry. 2003; Oct; 278(43): 41702–8.
12. Inohara N, Ogura Y, Fontalba A, Gutierrez O, Pons F, Crespo J, et al. Host Recognition of Bacterial Muramyl Dipeptide Mediated through NOD2. Journal of Biological Chemistry. 2003; Feb; 278(8): 5509–12.
13. Ashkenazi H, Malik Z, Harth Y, Nitzan Y. Eradication of Propionibacterium acnes by its endogenic porphyrins after illumination with high intensity blue light. FEMS Immunology and Medical Microbiology. 2003; Jan; 35(1): 17–24.
14. Chilakamarthi U, Giribabu L. Photodynamic Therapy: Past, Present and Future. Chem Rec. 2017; Aug; 17(8): 775–802.
15. Elman M, Lebzelter J. Light Therapy in the Treatment of Acne Vulgaris. Dermatol Surg. 2004; Feb; 30(2): 139–46.
16. Russell JJ. Topical therapy for acne. Am Fam Physician. 2000; Jan 15; 61(2): 357–66.
17. Nautiyal A, Wairkar S. Management of hyperpigmentation: Current treatments and emerging therapies. Pigment Cell Melanoma Res. 2021; Nov; 34(6): 1000–14.
18. Lipsker D, Lenormand C. Hyperpigmentations. Annales de Dermatologie et de Venereologie. 2019; Oct; 146(10): 666–82.
19. Adhikari M, Ali A, Kaushik NK, Choi EH. Perspective in Pigmentation Disorders. In: Hans-Robert Metelmann, Thomas Von Woedtke, Klaus-Dieter Weltmann, editors. Comprehensive Clinical Plasma Medicine [Internet]. Cham: Springer International Publishing; 2018 [cited 2023 Dec 2]. p. 363–400.
20. Hida T, Kamiya T, Kawakami A, Ogino J, Sohma H, Uhara H, et al. Elucidation of Melanogenesis Cascade for Identifying Pathophysiology and Therapeutic Approach of Pigmentary Disorders and Melanoma. Int J Mol Sci. 2020 Aug 25; 21(17): 6129.
21. Kameyama K, Sakai C, Kuge S, Nishiyama S, Tomita Y, Ito S, et al. The Expression of Tyrosinase, Tyrosinase‐Related Proteins 1 and 2 (TRP1 and TRP2), the Silver Protein, and a Melanogenic Inhibitor in Human Melanoma Cells of Differing Melanogenic Activities. Pigment Cell Research. 1995 Apr;8(2):97–104.
22. Pillaiyar T, Manickam M, Namasivayam V. Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry. 2017; Jan 1; 32(1): 403–25.
23. Kaufman BP, Aman T, Alexis AF. Postinflammatory Hyperpigmentation: Epidemiology, Clinical Presentation, Pathogenesis and Treatment. Am J Clin Dermatol. 2018; Aug; 19(4): 489–503.
24. Al-Qarqaz F, Bodoor K, Baba A, Al-Yousef A, Muhaidat J, Alshiyab D. Post-Acne Hyperpigmentation: Evaluation of risk factors and the use of Artificial Neural Network as a predictive classifier. Dermatol Reports [Internet]. 2021; Oct 6; [cited 2023 Dec 2]
25. Roggenkamp D, Dlova N, Mann T, Batzer J, Riedel J, Kausch M, et al. Effective reduction of post‐inflammatory hyperpigmentation with the tyrosinase inhibitor isobutylamido‐thiazolyl‐resorcinol (Thiamidol). Intern J of Cosmetic Sci. 2021; Jun; 43(3): 292–301.
26. Davis EC, Callender VD. Postinflammatory hyperpigmentation: a review of the epidemiology, clinical features, and treatment options in skin of color. J Clin Aesthet Dermatol. 2010; Jul; 3(7): 20–31.
27. Jih MH, Kimyai-Asadi A. Laser treatment of acne vulgaris. Semin Plast Surg. 2007; Aug; 21(3): 167–74.
28. Zeng W, Miao B, Li T, Zhang H, Hussain S, Li Y, et al. Hydrothermal synthesis, characterization of h-WO3 nanowires and gas sensing of thin film sensor based on this powder. Thin Solid Films. 2015; Jun; 584: 294–9.
29. Casanova F, Santos L. Encapsulation of cosmetic active ingredients for topical application – a review. Journal of Microencapsulation. 2016; Jan 2; 33(1): 1–17.
30. Singh MN, Hemant KSY, Ram M, Shivakumar HG. Microencapsulation: A promising technique for controlled drug delivery. Res Pharm Sci. 2010; Jul; 5(2): 65–77.
31. Ghosh SK. Functional coatings: by polymer microencapsulation. Weinheim: Wiley-VCH; 2010.
32. Jyothi NVN, Prasanna PM, Sakarkar SN, Prabha KS, Ramaiah PS, Srawan GY. Microencapsulation techniques, factors influencing encapsulation efficiency. Journal of Microencapsulation. 2010; May; 27(3): 187–97.
33. Madene A, Jacquot M, Scher J, Desobry S. Flavour encapsulation and controlled release – a review. Int J of Food Sci Tech. 2006; Jan; 41(1): 1–21.
34. Gharsallaoui A, Roudaut G, Chambin O, Voilley A, Saurel R. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International. 2007; Nov; 40(9): 1107–21.
35. Ghorab MM, Zia H, Luzzi LA. Preparation of controlled release anticancer agents I: 5-fluorouracil-ethyl cellulose microspheres. Journal of Microencapsulation. 1990 Jan;7(4):447–54.
36. Estevinho BN, Rocha F, Santos L, Alves A. Microencapsulation with chitosan by spray drying for industry applications – A review. Trends in Food Science and Technology. 2013; Jun; 31(2): 138–55.
37. arvalho IT, Estevinho BN, Santos L. Application of microencapsulated essential oils in cosmetic and personal healthcare products - a review. Int J Cosmet Sci. 2016; Apr; 38(2): 109–19.
38. Nosari ABFL, Lima JF, Serra OA, Freitas LAP. Improved green coffee oil antioxidant activity for cosmetical purpose by spray drying microencapsulation. Revista Brasileira de Farmacognosia. 2015; May; 25(3): 307–11.
39. Zhao Y, Yang X, Tian J, Wang F, Zhan L. Methanol electro-oxidation on Ni@Pd core-shell nanoparticles supported on multi-walled carbon nanotubes in alkaline media. International Journal of Hydrogen Energy. 2010; Apr; 35(8): 3249–57.
40. Nandy A, Saremi R, Lee E, Sharma S. Stability and Applicability of Retinyl Palmitate Loaded Beeswax Microcapsules for Cosmetic Use: Material properties and stability of microencapsulated actives. Johnson Matthey Technology Review. 2022; Jul 1; 66(3): 316–25.