Author(s):
Azhari Gani, Iskandar Zakaria, Basri A. Gani, Viona Diansari
Email(s):
azharigani@usk.ac.id
DOI:
10.52711/0974-360X.2025.00257
Address:
Azhari Gani1*, Iskandar Zakaria2, Basri A. Gani3, Viona Diansari4
1Department of Internal Medicine, Faculty of Medicine, Universitas Syiah Kuala and Dr. Zainal Abidin Hospital, Banda Aceh, Indonesia.
2Department of Radiology, Faculty of Medicine, Universitas Syiah Kuala, Darussalam, Banda Aceh, Indonesia.
3Department of Oral Biology, Dentistry Faculty, Universitas Syiah Kuala, Darussalam, Banda Aceh, Aceh, Indonesia.
4Department of Dental Material, Dentistry Faculty, Universitas Syiah Kuala, Darussalam, Banda Aceh, Aceh, Indonesia.
*Corresponding Author
Published In:
Volume - 18,
Issue - 4,
Year - 2025
ABSTRACT:
Wound healing is a complex biological process involving various cells, extracellular matrix, and signal mediators. Chitosan, with its bioactive properties, has shown promising potential as an ingredient in wound treatment. Chitosan formulation in film form increases sustained drug release, mechanical protection in the wound area, and antioxidant properties that can protect tissue from oxidative damage. The objective of the work was to evaluate in silico and in vivo the cytotoxic response of chitosan films (CF) on oral mucosa wound healing. The film of chitosan has good antioxidants (6.09 ppm) and contains chemical elements oxygen (69.4%), calcium (19.7%), magnesium (6.6%), and phosphorus (4.3%). The chitosan compounds have a strong binding affinity for receptors (genes) involved in wound healing and remodeling injured tissue and bone (VEGFR2, IL-1ß, MMP-9, CTGF, and MT-3). Both miLogP and TSPA have been identified as bioactivity indicator values potentially acceptable for wound application. The chitosan film has antioxidant qualities, chemical elements, and good bioactivity value.Varying concentrations (10%, 20%, and 30%) of chitosan film have a good effect in preventing toxicity to mucosal epithelial cells. The chemical compound chitosan film has a strong binding affinity with genes involved in wound healing and has a good effect in preventing toxicity to mucosal epithelial cells.
Cite this article:
Azhari Gani, Iskandar Zakaria, Basri A. Gani, Viona Diansari. Toxicity Response of Chitosan Films on Wound Healing of Oral Mucosa Ephitelian Cells, In-Vivo and In-Silico Evaluation. Research Journal of Pharmacy and Technology. 2025;18(4):1795-4. doi: 10.52711/0974-360X.2025.00257
Cite(Electronic):
Azhari Gani, Iskandar Zakaria, Basri A. Gani, Viona Diansari. Toxicity Response of Chitosan Films on Wound Healing of Oral Mucosa Ephitelian Cells, In-Vivo and In-Silico Evaluation. Research Journal of Pharmacy and Technology. 2025;18(4):1795-4. doi: 10.52711/0974-360X.2025.00257 Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-4-48
REFERENCES:
1. Singh S, Young A, McNaught C-E. The physiology of wound healing. Surgery (Oxford) 2017; 35(9): 473-77. https://doi.org/10.1016/j.mpsur.2017.06.004
2. Debnath S, Kumar RS, Babu MN. Ionotropic gelation–a novel method to prepare chitosan nanoparticles. Research Journal of Pharmacy and Technology. 2011; 4(4): 492-95.
3. Muxika A, Etxabide A, Uranga J, Guerrero P, De La Caba K. Chitosan as a bioactive polymer: Processing, properties and applications. International Journal of Biological Macromolecules 2017; 105: 1358-68. https://doi.org/10.1016/j.ijbiomac.2017.07.087
4. Gani BA, Jakfar S, Nasution AI, Nazar M, Fathmiyah S. The pH stability of film membrane of nano chitosan resveratrol in various solvents. Paper presented at: AIP Conference Proceedings, 2024. http://dx.doi.org/10.1063/5.0202138
5. Shariatinia Z. Pharmaceutical applications of chitosan. Advances in colloid and interface Science. 2019; 263: 131-94. https://doi.org/10.1016/j.cis.2018.11.008
6. Loo HL, Goh BH, Lee L-H, Chuah LH. Application of chitosan-based nanoparticles in skin wound healing. Asian Journal of Pharmaceutical Sciences. 2022; 17(3): 299-332. https://doi.org/10.1016/j.ajps.2022.04.001
7. Larouche J, Sheoran S, Maruyama K, Martino MM. Immune regulation of skin wound healing: mechanisms and novel therapeutic targets. Advances in Wound Care. 2018; 7(7): 209-31. https://doi.org/10.1089/wound.2017.0761
8. Alameddine HS, Morgan JE. Matrix metalloproteinases and tissue inhibitor of metalloproteinases in inflammation and fibrosis of skeletal muscles. Journal of Neuromuscular Diseases. 2016; 3(4): 455-73. https://doi.org/10.3233%2FJND-160183
9. Feng P, Luo Y, Ke C, et al. Chitosan-based functional materials for skin wound repair: Mechanisms and applications. Frontiers in Bioengineering and Biotechnology. 2021; 9: 650598. https://doi.org/10.3389/fbioe.2021.650598
10. Malik A, Malik N, Dhiman P, Khatkar A, Kakkar S. Molecular docking, synthesis, α-amylase inhibition, urease inhibition and antioxidant evaluation of 4-hydroxy-3-methoxy benzoic acid derivatives. Research Journal of Pharmacy and Technology. 2019; 12(12): 5653-63. http://dx.doi.org/10.5958/0974-360X.2019.00978.8
11. Gani BA, Asmah N, Soraya C, et al. Characteristics and Antibacterial Properties of Film Membrane of Chitosan-Resveratrol for Wound Dressing. Emerging Science Journal. 2023; 7(3): 821-42.https://doi.org/10.28991/ESJ-2023-07-03-012
12. Salazar-Aranda R, Pérez-Lopez LA, Lopez-Arroyo J, Alanís-Garza BA, Waksman de Torres N. Antimicrobial and antioxidant activities of plants from northeast of Mexico. Evidence-Based Complementary and Alternative Medicine. 2011; 2011. https://doi.org/10.1093/ecam/nep127
13. Yusuf H, Husna F, Gani BA, Garrido G. The chemical composition of the ethanolic extract from Chromolaena odorata leaves correlates with the cytotoxicity exhibited against colorectal and breast cancer cell lines. Journal of Pharmacy and Pharmacognosy Research. 2021; 9(3): 344-56. http://dx.doi.org/10.56499/jppres20.969_9.3.344
14. Marpaung YA, Abidin T, Ilyas S, Nainggolan I, Gani BA. Role of Nacre and Biodentine to Inducing the TGF-β1 in the Dentin Tertiary Formation on the Pulpitis Reversible of Rattus norvegicus. Research Journal of Pharmacy and Technology. 2022; 15(8): 3479-84. http://dx.doi.org/10.52711/0974-360X.2022.00583
15. Hambal M, Frengki F, Sari WE, Vanda H. In silico prediction of flavan-3-ol as a bioactive compound of Calophyllum macrophyllum as a potential drug against angiostrongylus eosinophilic meningitis. Veterinary World. 2022; 15(5): 1305.https://doi.org/10.14202%2Fvetworld.2022.1305-1313
16. Frengki F, Putra DP, Wahyuni FS, et al. Potential antiviral of catechins and their derivatives to inhibit sars-cov-2 receptors of M pro protein and spike glycoprotein in COVID-19 through the in silico approach. Jurnal Kedokteran Hewan-Indonesian Journal of Veterinary Sciences. 2020; 14(3). http://dx.doi.org/10.21157/j.ked.hewan.v14i3.16652
17. Soraya C, Alibasyah ZM, Nazar M, Gani BA. Chemical Constituents of Moringa oleifera Leaves of Ethanol Extract and its Cytotoxicity against Enterococcus faecalis of Root Canal Isolate. Research Journal of Pharmacy and Technology. 2022; 15(8): 3523-30.http://dx.doi.org/10.52711/0974-360X.2022.00591
18. Wellington D, Mikaelian I, Singer L. Comparison of ketamine-xylazine and ketamine-dexmedetomidine anesthesia and intraperitoneal tolerance in rats. Journal of the American Association for Laboratory Animal Science: JAALAS. 2013; 52(4): 481-87.
19. Yanti N, Nurliza C, Gani BA. Evaluating the Sapindusrarak DC Chemical compounds for their ability to inhibit the growth of Fusobacterium nucleatum In vitro. Research Journal of Pharmacy and Technology. 2023; 16(3): 1231-38.http://dx.doi.org/10.52711//0974-360X.2023.00204
20. Yadav V, Yadav A. Applications of chitosan in designing of different microspheres. Research Journal of Pharmacy and Technology. 2009; 2(1): 34-47.
21. Mehwish HM, Liu G, Rajoka MSR, et al. Therapeutic potential of Moringa oleifera seed polysaccharide embedded silver nanoparticles in wound healing. International Journal of Biological Macromolecules. 2021; 184: 144-58. https://doi.org/10.1016/j.ijbiomac.2021.05.202
22. Alaydrus S, Diantini A, Amalia R, Chaerunisa AY, Wathoni N. The future prospective: Potential magnesium and calcium for detracting side effect cisplatin. Research Journal of Pharmacy and Technology. 2022; 15(1): 481-88. http://dx.doi.org/10.52711/0974-360X.2022.00078
23. Kostov K, Halacheva L. Role of magnesium deficiency in promoting atherosclerosis, endothelial dysfunction, and arterial stiffening as risk factors for hypertension. International Journal of Molecular Sciences. 2018; 19(6): 1724. https://doi.org/10.3390/ijms19061724
24. Dominguez LJ, Veronese N, Guerrero-Romero F, Barbagallo M. Magnesium in infectious diseases in older people. Nutrients. 2021; 13(1): 180. https://doi.org/10.3390/nu13010180
25. Luo D, Yuan L, Liu L, Wang Y, Fan W. The mechanism of biological phosphorus removal under anoxic-aerobic alternation condition with starch as sole carbon source and its biochemical pathway. Biochemical Engineering Journal. 2018; 132: 90-99. http://dx.doi.org/10.1016/j.bej.2018.01.007
26. Fadilah NIM, Phang SJ, Kamaruzaman N, et al. Antioxidant biomaterials in cutaneous wound healing and tissue regeneration: A critical review. Antioxidants 2023; 12(4): 787. https://doi.org/10.3390/antiox12040787
27. Tristantini D, Ismawati A, Pradana BT, Jonathan JG. Pengujian aktivitas antioksidan menggunakan metode DPPH pada daun tanjung (Mimusops elengi L). Paper presented at: Seminar Nasional Teknik Kimia" Kejuangan", 2016.
28. Xie J, Liu J, Liu H, et al. The antitumor effect of tanshinone IIA on anti-proliferation and decreasing VEGF/VEGFR2 expression on the human non-small cell lung cancer A549 cell line. Acta Pharmaceutica Sinica B. 2015; 5(6): 554-63. https://doi.org/10.1016%2Fj.apsb.2015.07.008
29. Frengki F, Sofia V, Putra DP, et al. Hasil review. Prediction of diacerein inhibition activity against interleukin-1 receptors through docking method and tracing of pharmacokinetic profiles and their toxicity. 2020.
30. Rathee D, Lather V, Grewal AS, Dureja H. Targeting matrix metalloproteinases with novel diazepine substituted cinnamic acid derivatives: design, synthesis, in vitro and in silico studies. Chemistry Central Journal. 2018; 12(1): 1-15. https://doi.org/10.1186%2Fs13065-018-0411-8
31. Yang F, Chung AC, Huang XR, Lan HY. Angiotensin II induces connective tissue growth factor and collagen I Expression via transforming growth factor–β–dependent and–independent Smad pathways: the role of Smad3. Hypertension. 2009; 54(4): 877-84. https://doi.org/10.1161/hypertensionaha.109.136531
32. Xu W, Jiang G-J, Shi G-Z, et al. Metallothionein 1M (MT1M) inhibits lung adenocarcinoma cell viability, migration, and expression of cell mobility-related proteins through MDM2/p53/MT1M signaling. Translational Cancer Research. 2020; 9(4): 2710. https://doi.org/10.21037%2Ftcr.2020.02.61
33. Shibuya M. Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis: A Crucial Target for Anti- and Pro-Angiogenic Therapies. Genes Cancer 2011; 2(12): 1097-105. https://doi.org/10.1177%2F1947601911423031
34. Abbate A, Toldo S, Marchetti C, et al. Interleukin-1 and the Inflammasome as Therapeutic Targets in Cardiovascular Disease. Circ Res. 2020; 126(9): 1260-80. https://doi.org/10.1161/circresaha.120.315937
35. Azuma K, Izumi R, Osaki T, et al. Chitin, chitosan, and its derivatives for wound healing: old and new materials. J Funct Biomater. 2015; 6(1): 104-42. https://doi.org/10.3390%2Fjfb6010104
36. Luchian I, Goriuc A, Sandu D, Covasa M. The role of matrix metalloproteinases (MMP-8, MMP-9, MMP-13) in periodontal and peri-implant pathological processes. International Journal of Molecular Sciences. 2022; 23(3): 1806. https://doi.org/10.3390%2Fijms23031806
37. Yoshida GJ. Regulation of heterogeneous cancer-associated fibroblasts: the molecular pathology of activated signaling pathways. Journal of Experimental and Clinical Cancer Research. 2020; 39(1): 1-15. http://dx.doi.org/10.1186/s13046-020-01611-0
38. Shi D, Feng C, Xie J, et al. Recent progress of nanomedicine in secreted phospholipase A2 as a potential therapeutic target. Journal of Materials Chemistry B. 2022; 10(37): 7349-60. http://dx.doi.org/10.1039/D2TB00608A
39. Javed R, Zia M, Naz S, et al. Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. Journal of Nanobiotechnology. 2020; 18: 1-15. https://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-020-00704-4
40. Caron G, Ermondi G. Molecular descriptors for polarity: the need for going beyond polar surface area: Future Science. 2016. p. 2013-16. http://dx.doi.org/10.1002/9783527621286.ch5
41. Rajeshkumar RR, Kumar BK, Parasuraman P, et al. Graph theoretical network analysis, in silico exploration, and validation of bioactive compounds from Cynodon dactylon as potential neuroprotective agents against α-synuclein. BioImpacts: BI 2022; 12(6): 487. https://doi.org/10.34172/bi.2022.24113
42. Morgado PI, Aguiar-Ricardo A, Correia IJ. Asymmetric membranes as ideal wound dressings: An overview on production methods, structure, properties and performance relationship. Journal of Membrane Science. 2015; 490: 139-51. http://dx.doi.org/10.1016/j.memsci.2015.04.064
43. Yin IX, Zhang J, Zhao IS, et al. The antibacterial mechanism of silver nanoparticles and its application in dentistry. International Journal of Nanomedicine. 2020: 2555-62. https://doi.org/10.2147/ijn.s246764
44. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced drug delivery reviews. 2012; 64: 4-17. https://doi.org/10.1016/s0169-409x(00)00129-0
45. Angelova VT, Pencheva T, Vassilev N, et al. Development of New Antimycobacterial Sulfonyl Hydrazones and 4-Methyl-1,2,3-thiadiazole-Based Hydrazone Derivatives. Antibiotics (Basel). 2022; 11(5). https://doi.org/10.3390%2Fantibiotics11050562
46. Waring MJ. Lipophilicity in drug discovery. Expert Opinion on Drug Discovery. 2010; 5(3): 235-48.http://dx.doi.org/10.1517/17460441003605098
47. Dąbrowska M, Starek M, Skuciński J. Lipophilicity study of some non-steroidal anti-inflammatory agents and cephalosporin antibiotics: a review. Talanta. 2011; 86: 35-51. https://doi.org/10.1016/j.talanta.2011.09.017
48. Akintemi EO, Govender KK, Singh T. A DFT study of the chemical reactivity properties, spectroscopy and bioactivity scores of bioactive flavonols. Computational and Theoretical Chemistry. 2022; 1210: 113658.
49. Parcheta M, Świsłocka R, Orzechowska S, et al. Recent developments in effective antioxidants: The structure and antioxidant properties. Materials. 2021; 14(8): 1984. https://doi.org/10.3390/ma14081984
50. Herdiana Y, Husni P, Nurhasanah S, Shamsuddin S, Wathoni N. Chitosan-Based Nano Systems for Natural Antioxidants in Breast Cancer Therapy. Polymers (Basel). 2023; 15(13). https://doi.org/10.3390/polym15132953
51. Peñalver R, Martínez-Zamora L, Lorenzo JM, Ros G, Nieto G. Nutritional and Antioxidant Properties of Moringa oleifera Leaves in Functional Foods. Foods. 2022; 11(8). https://doi.org/10.3390/foods11081107
52. Fadilah NIM, Phang SJ, Kamaruzaman N, et al. Antioxidant Biomaterials in Cutaneous Wound Healing and Tissue Regeneration: A Critical Review. Antioxidants (Basel). 2023;12(4). https://doi.org/10.3390/antiox12040787
53. Mehlenbacher MR, Elsiesy R, Lakha R, et al. Metal binding and interdomain thermodynamics of mammalian metallothionein-3: enthalpically favoured Cu+ supplants entropically favoured Zn 2+ to form Cu 4+ clusters under physiological conditions. Chemical Science. 2022; 13(18): 5289-304. http://www.rsc.org/chemicalscience
54. Hou J, Yang R, Vuong I, et al. Biomaterials strategies to balance inflammation and tenogenesis for tendon repair. Acta Biomaterialia. 2021; 130: 1-16. https://doi.org/10.1016/j.actbio.2021.05.043
55. Fatehi P, Abbasi M. Medicinal plants used in wound dressings made of electrospun nanofibers. Journal of Tissue Engineering and Regenerative Medicine. 2020; 14(11): 1527-48. https://doi.org/10.1002/term.3119