Author(s): Sandy Vitria Kurniawan, Melva Louisa, Silvia Surini, Jamal Zaini, Vivian Soetikno

Email(s): melva.louisa@gmail.com

DOI: 10.52711/0974-360X.2025.00252   

Address: Sandy Vitria Kurniawan1,2, Melva Louisa3*, Silvia Surini4, Jamal Zaini5, Vivian Soetikno3
1Doctoral Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
2Department of Pharmacology and Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia.
3Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
4Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java, Indonesia.
5Department of Pulmonology and Respiratory Medicine Faculty of Medicine Universitas Indonesia, Persahabatan National Respiratory Referral Hospital, Jakarta, Indonesia.
*Corresponding Author

Published In:   Volume - 18,      Issue - 4,     Year - 2025


ABSTRACT:
Curcumin is a compound that has been extensively studied for a wide range of illnesses, including respiratory diseases. However, when administered orally, curcumin has low bioavailability and limited tissue concentrations. Thus, it limits the use of oral curcumin in pulmonary diseases. One of the alternative solutions is to develop a formulation of curcumin for inhalation. This study aimed to develop a curcumin nanosuspension formulation for pulmonary drug delivery. Curcumin nanosuspension for inhalation was developed by mixing the dissolved drug into poloxamer 188, followed by stirring and high-speed homogenization. The resulting nanosuspension was evaluated for its particle size, polydispersity index (PDI), zeta potential, entrapment efficiency, and stability test. Curcumin nanosuspension was delivered to the rats via nebulizer for 30minutes. An hour after inhalation, rats were sacrificed. Then, blood and lung tissues were obtained to analyze curcumin concentrations. The particle size of curcumin in the selected suspension formulation was 281.3nm, with a PDI of 0.464 and a zeta potential of -29.5. Entrapment efficiency was 90.11±6.72%. Curcumin was detected in the lung with a concentration of 0.161?0.022ng/100mg of lung tissues but undetected in the rat plasma. Thus, a curcumin nanosuspension formulation for inhalation was successfully made using poloxamer 188, followed by high-speed homogenization. The preparation was fast and straightforward. In addition, the formulation was effective for local delivery to the lung.


Cite this article:
Sandy Vitria Kurniawan, Melva Louisa, Silvia Surini, Jamal Zaini, Vivian Soetikno. Development and Characterization of Curcumin Nanosuspension Formulation for Pulmonary Drug Delivery. Research Journal of Pharmacy and Technology. 2025;18(4):1757-4. doi: 10.52711/0974-360X.2025.00252

Cite(Electronic):
Sandy Vitria Kurniawan, Melva Louisa, Silvia Surini, Jamal Zaini, Vivian Soetikno. Development and Characterization of Curcumin Nanosuspension Formulation for Pulmonary Drug Delivery. Research Journal of Pharmacy and Technology. 2025;18(4):1757-4. doi: 10.52711/0974-360X.2025.00252   Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-4-43


REFERENCES:
1.    Newman SP. Drug delivery to the lungs: challenges and opportunities. Therapeutic Delivery. 2017; 8(8): 647-61. doi:10.4155/tde-2017-0037
2.    He S, Gui J, Xiong K, Chen M, Gao H, Fu Y. A roadmap to pulmonary delivery strategies for the treatment of infectious lung diseases. Journal of Nanobiotechnology. 2022; 20(1): 101. doi:10.1186/s12951-022-01307-x
3.    Brosnahan SB, Jonkman AH, Kugler MC, Munger JS, Kaufman DA. COVID-19 and Respiratory System Disorders. Arteriosclerosis, Thrombosis, and Vascular Biology. 2020; 40(11): 2586-97. doi:doi:10.1161/ATVBAHA.120.314515
4.    Lelli D, Sahebkar A, Johnston TP, Pedone C. Curcumin use in pulmonary diseases: State of the art and future perspectives. Pharmacological  Research. 2017; 115: 133-48. doi:10.1016/j.phrs.2016.11.017
5.    Zhang B, Swamy S, Balijepalli S, Panicker S, Mooliyil J, Sherman MA, et al. Direct pulmonary delivery of solubilized curcumin reduces severity of lethal pneumonia. The FASEB Journal. 2019; 33(12): 13294-309. doi:10.1096/fj.201901047RR
6.    Yekollu SK, Thomas R, O'Sullivan B. Targeting curcusomes to inflammatory dendritic cells inhibits NF-κB and improves insulin resistance in obese mice. Diabetes. 2011; 60(11): 2928-38. doi:10.2337/db11-0275
7.    Xu XY, Meng X, Li S, Gan RY, Li Y, Li HB. Bioactivity, Health Benefits, and Related Molecular Mechanisms of Curcumin: Current Progress, Challenges, and Perspectives. Nutrients. 2018; 10(10). doi:10.3390/nu10101553
8.    Sharifi-Rad J, Rayess YE, Rizk AA, Sadaka C, Zgheib R, Zam W, et al. Turmeric and Its Major Compound Curcumin on Health: Bioactive Effects and Safety Profiles for Food, Pharmaceutical, Biotechnological and Medicinal Applications. Frontiers in Pharmacology. 2020; 11: 01021. doi:10.3389/fphar.2020.01021
9.    Rahmani AH, Alsahli MA, Aly SM, Khan MA, Aldebasi YH. Role of Curcumin in Disease Prevention and Treatment. Advanced Biomedical Research. 2018; 7: 38. doi:10.4103/abr.abr_147_16
10.    Sohn SI, Priya A, Balasubramaniam B, Muthuramalingam P, Sivasankar C, Selvaraj A, et al. Biomedical Applications and Bioavailability of Curcumin-An Updated Overview. Pharmaceutics. 2021; 13(12). doi:10.3390/pharmaceutics13122102
11.    Her C, Venier-Julienne M-C, Roger E. Improvement of Curcumin Bioavailability for Medical Applications. Medicinal & Aromatic Plants. 2018; 07. doi:10.4172/2167-0412.1000326
12.    Abd El-Hack ME, El-Saadony MT, Swelum AA, Arif M, Abo Ghanima MM, Shukry M, et al. Curcumin, the active substance of turmeric: its effects on health and ways to improve its bioavailability. Journal of the Science of Food and Agriculture. 2021; 101(14): 5747-62. doi:10.1002/jsfa.11372
13.    Zhang T, Chen Y, Ge Y, Hu Y, Li M, Jin Y. Inhalation treatment of primary lung cancer using liposomal curcumin dry powder inhalers. Acta Pharmaceutica Sinica B. 2018; 8(3): 440-48. doi:10.1016/j.apsb.2018.03.004
14.    Hu Y, Li M, Zhang M, Jin Y. Inhalation treatment of idiopathic pulmonary fibrosis with curcumin large porous microparticles. International Journal of Pharmaceutics. 2018; 551(1-2): 212-22. doi:10.1016/j.ijpharm.2018.09.031
15.    Ibrahim M, Verma R, Garcia-Contreras L. Inhalation drug delivery devices: technology update. Medical Devices (Auckl). 2015; 8: 131-9. doi:10.2147/mder.S48888
16.    Ibarra-Sánchez L, Gámez-Méndez A, Martínez-Ruiz M, Nájera-Martínez EF, Morales-Flores BA, Melchor-Martínez EM, et al. Nanostructures for drug delivery in respiratory diseases therapeutics: Revision of current trends and its comparative analysis. Journal of Drug Delivery Science and Technology. 2022; 70: 103219. doi:10.1016/j.jddst.2022.103219
17.    Hemmati AA, Sistani Karampour N, Dahanzadeh S, Sharif Makhmalzadeh B, Rezaie A, Ghafourian M. The Protective Effects of Nebulized Nano-Curcumin Against Bleomycin-Induced Pulmonary Fibrosis in Rats. Jundishapur Journal of Natural Pharmaceutical Products. 2021; 16(2): e106961. doi:10.5812/jjnpp.106961
18.    Al Ayoub Y, Gopalan RC, Najafzadeh M, Mohammad MA, Anderson D, Paradkar A, et al. Development and evaluation of nanoemulsion and microsuspension formulations of curcuminoids for lung delivery with a novel approach to understanding the aerosol performance of nanoparticles. International Journal of Pharmaceutics. 2019; 557: 254-63. doi:10.1016/j.ijpharm.2018.12.042
19.    Jacob S, Nair AB, Shah J. Emerging role of nanosuspensions in drug delivery systems. Biomaterials Research. 2020; 24(1): 3. doi:10.1186/s40824-020-0184-8
20.    Malsane S, Saudagar R. Nanosuspension: An Overview. Asian Journal of Research in Pharmaceutical Science. 2017; 7: 81. doi:10.5958/2231-5659.2017.00012.1
21.    Arozal W, Ramadanty WT, Louisa M, Satyana RPU, Hartono G, Fatrin S, et al. Pharmacokinetic profile of curcumin and nanocurcumin in plasma, ovary, and other tissues. Drug Research. 2019; 69(10): 559-64. doi: 10.1055/a-0863-4355  
22.    Zhang J, Xie Z, Zhang N, Zhong J. Nanosuspension drug delivery system: preparation, characterization, postproduction processing, dosage form, and application. In: Nanostructures for Drug Delivery. 2017. p. 413-43. doi: 10.1016/B978-0-323-46143-6.00013-0.
23.    Pınar SG, Oktay AN, Karaküçük AE, Çelebi N. Formulation Strategies of Nanosuspensions for Various Administration Routes. Pharmaceutics. 2023; 15(5): 1520. doi:10.3390/pharmaceutics15051520
24.    Ucisik MH, Küpcü S, Schuster B, Sleytr UB. Characterization of CurcuEmulsomes: nanoformulation for enhanced solubility and delivery of curcumin. Journal of Nanobiotechnology. 2013; 11: 37. doi:10.1186/1477-3155-11-37
25.    Anonymous. Agency for Toxic Substances and Disease Registry (ATSDR) Toxicological Profiles.  Toxicological Profile for Acetone. Atlanta (GA): Agency for Toxic Substances and Disease Registry (US); 2022.
26.    Yadav G, Singh S. Nanosuspension: A Promising Drug Delivery System. Pharmacophore. 2012; 3: 217-43.
27.    Bhairy S, Hirlekar R, Dekate S. Preparation and Characterization of Oral Nanosuspension Loaded with Curcumin. International Journal of Pharmacy and Pharmaceutical Sciences. 2018; 10: 6. doi:10.22159/ijpps.2018v10i6.22027
28.    Wang L, Du J, Zhou Y, Wang Y. Safety of nanosuspensions in drug delivery. Nanomedicine: Nanotechnology, Biology and Medicine. 2017; 13: 455-69. doi:10.1016/j.nano.2016.08.007
29.    Lindenberg F, Sichel F, Lechevrel M, Respaud R, Saint-Lorant G. Evaluation of Lung Cell Toxicity of Surfactants for Inhalation Route. Journal of Toxicology and Risk Assessment. 2019; 5(2). doi:10.23937/2572-4061.1510022
30.    Surini S, Leonyza A, Suh CW. Formulation and In Vitro Penetration Study of Recombinant Human Epidermal Growth Factor-Loaded Transfersomal Emulgel. Advanced Pharmaceutical Bulletin. 2020; 10(4): 586-94. doi:10.34172/apb.2020.070
31.    Kumar A, Dixit CK. Methods for characterization of nanoparticles.  Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids. 2017. 43-58.
32.    Mudalige T, Qu H, Van Haute D, Ansar SM, Paredes A, Ingle T. Characterization of Nanomaterials.  Nanomaterials for Food Applications. 2019. 313-53.
33.    Patravale VB, Date AA, Kulkarni RM. Nanosuspensions: a promising drug delivery strategy. Journal of Pharmacy and Pharmacology. 2004; 56(7): 827-40. doi:10.1211/0022357023691
34.    Zhang J, Xie Z, Zhang N, Zhong J. Nanosuspension Drug Delivery System: Preparation, Characterization, Postproduction Processing, Dosage Form, and Application. In: Andronescu E, AM Grumezescu, editors. Nanostructures for Drug Delivery. Philadelphia: Elsevier; 2017. 413-43.
35.    Torge A, Pavone G, Jurisic M, Lima-Engelmann K, Schneider M. A comparison of spherical and cylindrical microparticles composed of nanoparticles for pulmonary application. Aerosol Science and Technology. 2019; 53(1): 53-62. doi:10.1080/02786826.2018.1542484
36.    Rabinow BE. Nanosuspensions in drug delivery. Nature Review Drug Discovery. 2004; 3(9): 785-796. doi:10.1038/nrd1494
37.    Mirzaee F, Hosseinzadeh L, Ashrafi-Kooshk MR, Esmaeili S, Ghobadi S, Farzaei MH, et al. Diverse Effects of Different "Protein-Based" Vehicles on the Stability and Bioavailability of Curcumin: Spectroscopic Evaluation of the Antioxidant Activity and Cytotoxicity In Vitro. Protein Peptide Letters. 2019; 26(2): 132-47. doi:10.2174/0929866525666181114152242

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available