Author(s): Rhazzar Zineb, Regragui Rim, Touil Nadia, El Fahime Elmostafa, Oukessou Mohamed, Fellahi Siham, Nyabi Omar, Gala Jean-Luc, Ennibi Khalid

Email(s): zineb.rhazzar@um5r.ac.ma

DOI: 10.52711/0974-360X.2025.00251   

Address: Rhazzar Zineb1,2*, Regragui Rim3, Touil Nadia4, El Fahime Elmostafa5, Oukessou Mohamed6, Fellahi Siham3, Nyabi Omar7, Gala Jean-Luc7, Ennibi Khalid1,2
1Cell Culture Unit, Center of Virology, Infectious and Tropical Diseases, The Mohammed V Military Training Hospital, Rabat, Morocco.
2Immunopathology Research Team (ERIP), Faculty of Medicine of Pharmacy, University Mohammed V, Rabat, Morocco.
3Department of Veterinary, Pathology and Public Health, Hassan II Institute of Agronomy and Veterinary Medicine, Rabat, 10000, Morocco.
4Genomic Center for Human Pathologies (GENOPATH), Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco.
5Mohammed VI Center for Research and Innovation, Rabat, Morocco.
6Department of Veterinary, Biological and Pharmaceutical Science, Hassan II Institute of Agronomy and Veterinary Medicine, Rabat, 10000, Morocco.
7Center for Applied Molecular Technologies (CTMA), Institute of Clinical and Experimental Research, Université Catholiqu

Published In:   Volume - 18,      Issue - 4,     Year - 2025


ABSTRACT:
COVID-19 pandemic has been an unprecedented challenge to global public health, intensifying the need for effective antiviral treatments against SARS-CoV-2 and its variants. Among the myriad of compounds explored, thymoquinone (TQ), a natural constituent of Nigella sativa (black seed), has garnered interest for its potential therapeutic properties. This study aims to investigate the antiviral efficacy of thymoquinone against the Omicron variant of SARS-CoV-2 through comprehensive in vitro experiments. The research utilizes two distinct protocols to assess thymoquinone’s capacity to inhibit viral replication at different stages, both as a prophylactic agent and as a post-infection treatment. Various concentrations of TQ were tested, and dose/response curves were generated to assess the half-maximal effective concentration (EC50) in both protocols. Additionally, MTT assay was used to assess the cytotoxicity due to each TQ concentration. The results demonstrate a significant inhibition of viral replication, with comparable efficacy observed between the preventive and therapeutic applications of TQ. The obtained EC50 (46,19 µM and 54,161 µM respectively for preventive and treatment approaches) suggest that TQ has a broad spectrum of action, and when comparing both EC50 to the CC50 (65,68 µM), it is evident that TQ has a favorable therapeutic index, making it a potential safe and versatile candidate for both preventive and therapeutic purposes against SARS-CoV-2


Cite this article:
Rhazzar Zineb, Regragui Rim, Touil Nadia, El Fahime Elmostafa, Oukessou Mohamed, Fellahi Siham, Nyabi Omar, Gala Jean-Luc, Ennibi Khalid. In vitro Potential Antiviral SARS-CoV-2 activity of Thymoquinone, the main Nigella sativa component. Research Journal of Pharmacy and Technology. 2025;18(4):1750-6. doi: 10.52711/0974-360X.2025.00251

Cite(Electronic):
Rhazzar Zineb, Regragui Rim, Touil Nadia, El Fahime Elmostafa, Oukessou Mohamed, Fellahi Siham, Nyabi Omar, Gala Jean-Luc, Ennibi Khalid. In vitro Potential Antiviral SARS-CoV-2 activity of Thymoquinone, the main Nigella sativa component. Research Journal of Pharmacy and Technology. 2025;18(4):1750-6. doi: 10.52711/0974-360X.2025.00251   Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-4-42


REFERENCES:
1.    Kakavandi S, Zare I, VaezJalali M, et al. Structural and non-structural proteins in SARS-CoV-2: potential aspects to COVID-19 treatment or prevention of progression of related diseases. Cell Communication and Signaling. 2023; 21(1): 1-31. doi:10.1186/S12964-023-01104-5
2.    Behnood SA, Shafran R, Bennett SD, et al. Persistent symptoms following SARS-CoV-2 infection amongst children and young people: A meta-analysis of controlled and uncontrolled studies. Journal of Infection. 2022; 84(2): 158-170. doi:10.1016/J.JINF.2021.11.011
3.    Singh P, Sharma D, Singh V, Kumari S, Singh A, Jain H. Management of Non-hospitalized patients with Acute SARS-CoV-2 (COVID-19) viral infection in among human adult population. AJM. Published online December 18, 2023: 227-232. doi:10.52711/2321-5763.2023.00038
4.    Rokade M, Khandagale P. Coronavirus Disease: A Review of a New Threat to Public Health. Asian Journal of Pharmaceutical Research. 2020; 10(3): 241-244. doi:10.5958/2231-5691.2020.00042.8
5.    Harvey WT, Carabelli AM, Jackson B, et al. SARS-CoV-2 variants, spike mutations and immune escape. Nature Reviews Microbiology. 2021; 19(7): 409-424. doi:10.1038/s41579-021-00573-0
6.    Rodge PJ, Rawal MB, Khairnar VS. Omicron variant [2021-2022]: A new chapter in the COVID-19 Pandemic. Research Journal of Pharmacology and Pharmacodynamics. 2022; 14(3): 191-195. doi:10.52711/2321-5836.2022.00034
7.    Singhal T. The Emergence of Omicron: Challenging Times Are Here Again! Indian Journal of Pediatrics. 2022; 89(5): 490-496. doi:10.1007/S12098-022-04077-4/TABLES/1
8.    Shrestha LB, Foster C, Rawlinson W, Tedla N, Bull RA. Evolution of the SARS-CoV-2 omicron variants BA.1 to BA.5: Implications for immune escape and transmission. Reviews in Medical Virology. 2022; 32(5): e2381-e2381. doi:10.1002/RMV.2381
9.    Liu W, Huang Z, Xiao J, Wu Y, Xia N, Yuan Q. Evolution of the SARS-CoV-2 Omicron Variants: Genetic Impact on Viral Fitness. Viruses. 2024; 16(2): 184-184. doi:10.3390/V16020184
10.    Tamura T, Ito J, Uriu K, et al. Virological characteristics of the SARS-CoV-2 XBB variant derived from recombination of two Omicron subvariants. Nature Communications. 2023; 14(1): 1-20. doi:10.1038/s41467-023-38435-3
11.    Chen X, Huang X, Ma Q, et al. Preclinical evaluation of the SARS-CoV-2 Mpro inhibitor RAY1216 shows improved pharmacokinetics compared with nirmatrelvir. Nature Microbiology. 2024; 9(4): 1075-1088. doi:10.1038/s41564-024-01618-9
12.    Paswan D, Pande U, Singh A, Sharma D, Kumar S, Singh A. Epidemiology, Genomic Organization, and Life Cycle of SARS CoV-2. Asian Journal of Nursing Education and Research. 2023; 13(2): 141-144. doi:10.52711/2349-2996.2023.00031
13.    Kronenberger T, Laufer SA, Pillaiyar T. COVID-19 therapeutics: Small-molecule drug development targeting SARS-CoV-2 main protease. Drug Discovery Today. 2023; 28(6): 103579-103579. doi:10.1016/J.DRUDIS.2023.103579
14.    Phillipson JD. Phytochemistry and medicinal plants. Phytochemistry. 2001; 56(3): 237-243. doi:10.1016/S0031-9422(00)00456-8
15.    Chauiyakh O, Et-Tahir A, Satrani B, et al. Chemical Composition and Evaluation of the Antibacterial and Antifungal Activities of Pre-Rif Teucrium polium Essential Oil. Research Journal of Pharmacy and Technology. 2022; 15(4): 1755-1760. doi:10.52711/0974-360X.2022.00294
16.    Khazdair MR, Ghafari S, Sadeghi M. Possible therapeutic effects of Nigella sativa and its thymoquinone on COVID-19. Pharmaceutical Biology. 2021; 59(1): 696-703. doi:10.1080/13880209.2021.1931353
17.    Ns M, N M, Nh AB, et al. Neuroprotective effects of thymoquinone against MDMA-induced neurotoxicity. Research Journal of Pharmacy and Technology. 2021; 14(11): 5945-5952. doi:10.52711/0974-360X.2021.01033
18.    Fatima Shad K, Soubra W, Cordato DJ. The role of thymoquinone, a major constituent of Nigella sativa, in the treatment of inflammatory and infectious diseases. Clinical and Experimental Pharmacology and Physiology. 2021; 48(11): 1445-1453. doi:10.1111/1440-1681.13553
19.    Sommer AP, Försterling HD, Naber KG. Thymoquinone: shield and sword against SARS-CoV-2. Precision Nanomedicine. Published online May 2020. doi:10.33218/001C.12984)
20.    Abdelrahim M, Esmail A, Al Saadi N, et al. Thymoquinone’s Antiviral Effects: It is Time to be Proven in the Covid-19 Pandemic Era and its Omicron Variant Surge. Frontiers in Pharmacology. 2022; 13: 848676-848676. doi:10.3389/FPHAR.2022.848676/BIBTEX
21.    Bahuguna A, Khan I, VB. MTT assay to evaluate the cytotoxic potential of a drug.  Bangladesh Journal of Pharmacology. 2017; 12: 115-118. doi:10.3329/bjp.v12i2.30892
22.    Ali A, Malipatil M, Ahmed L. MTT Assay on Anticancer properties of the different extracts of roots of Lantana camara Linn. Research Journal of Pharmacy and Technology. 2024; 17(3): 1166-1172. doi:10.52711/0974-360X.2024.00181
23.    Jaichand1 J, Sabu KK, Iyer TV. Cytotoxicity Studies and Antiviral Activity of Sesbania grandiflora. Research Journal of Pharmacy and Technology. 2024; 17(6): 2839-2845. doi:10.52711/0974-360X.2024.00446
24.    Reed L, Muench H. A simple method of estimating fifty per cent endpoints. Published online 1938. https://www.cabidigitallibrary.org/doi/full/10.5555/19412202800
25.    Khatua S, Paul S, Acharya K. Mushroom as the Potential Source of New Generation of Antioxidant: A Review. Research Journal of Pharmacy and Technology. 2013; 6(5): 496-505.
26.    Salim B, Noureddine M. Identification of Compounds from Nigella Sativa as New Potential Inhibitors of 2019; Novel Coronasvirus (Covid-19): Molecular Docking Study. Published online April 2020. doi:10.26434/CHEMRXIV.12055716.V1
27.    Chaieb K, Kouidhi B, Jrah H, Mahdouani K, Bakhrouf A. Antibacterial activity of Thymoquinone, an active principle of Nigella sativa and its potency to prevent bacterial biofilm formation. BMC Complementary and Alternative Medicine. 2011; 11(1): 1-6. doi:10.1186/1472-6882-11-29/FIGURES/1
28.    Aljabre SHM, Randhawa MA, Akhtar N, Alakloby OM, Alqurashi AM, Aldossary A. Antidermatophyte activity of ether extract of Nigella sativa and its active principle, thymoquinone. Journal of Ethnopharmacology. 2005; 101(1-3): 116-119. doi:10.1016/J.JEP.2005.04.002
29.    Tania M, Asad A, Li T, et al. Thymoquinone against infectious diseases: Perspectives in recent pandemics and future therapeutics. Iranian Journal of Basic Medical Sciences. 2021; 24(8): 1014-1014. doi:10.22038/IJBMS.2021.56250.12548
30.    Tiwari P, Jena S, Satpathy S, Sahu PK. Nigella sativa: Phytochemistry, Pharmacology and its Therapeutic Potential. Research Journal of Pharmacy and Technology. 2019; 12(7): 3111-3116. doi:10.5958/0974-360X.2019.00526.2
31.    Mhatre S, Srivastava T, Naik S, Patravale V. Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: A review. Phytomedicine. 2021; 85: 153286-153286. doi:10.1016/J.PHYMED.2020.153286
32.    Zhang J, Shen X, Li Y, et al. Discovery of antiSARSCoV2 agents from commercially available flavor via docking screening. Medicinal Plant Biology. 2023; 2(1): 0-0. doi:10.48130/MPB-2023-0010
33.    Khan MT, Ali A, Wei X, et al. Inhibitory effect of thymoquinone from Nigella sativa against SARS-CoV-2 main protease. An in-silico study. Brazilian Journal of Biology. 2022; 84: e250667-e250667. doi:10.1590/1519-6984.25066
34.    Mohideen ABRAC, 2021 undefined. Molecular docking analysis of phytochemical thymoquinone as a therapeutic agent on SARS-Cov-2 envelope protein. academia.eduAKS MohideenBiointerface Res Appl Chem, 2021. https://www.academia.edu/download/79961662/20695837111.83898401.pdf
35.    Ahmad S, Abbasi HW, Shahid S, Gul S, Abbasi SW. Molecular docking, simulation and MM-PBSA studies of nigella sativa compounds: a computational quest to identify potential natural antiviral for COVID-19 treatment. Journal of Biomolecular Structure and Dynamics. 2021; 39(12): 4225-4233. doi:10.1080/07391102.2020.1775129
36.    Seadawy MG, Gad AF, Elhoseny MF, et al. In vitro: Natural Compounds (Thymol, Carvacrol, Hesperidine, And Thymoquinone) Against Sars-Cov2 Strain Isolated From Egyptian Patients. bioRxiv. Published online November 2020: 2020.11.07.367649-2020.11.07.367649. doi:10.1101/2020.11.07.367649
37.    Maen A, Gok Yavuz B, Mohamed YI, et al. Individual ingredients of NP-101 (Thymoquinone formula) inhibit SARS-CoV-2 pseudovirus infection. Frontiers in Pharmacology. 2024; 15. doi:10.3389/FPHAR.2024.1291212/FULL
38.    Ahmad I, Pawara R, Surana S, Patel H. The Repurposed ACE2 Inhibitors: SARS-CoV-2 Entry Blockers of Covid-19. Topics in Current Chemistry. 2021; 379(6). doi:10.1007/S41061-021-00353-7
39.    Xu H, Liu B, Xiao Z, et al. Computational and Experimental Studies Reveal That Thymoquinone Blocks the Entry of Coronaviruses Into In Vitro Cells. Infectious Diseases and Therapy. 2021; 10(1): 483-494. doi:10.1007/S40121-021-00400-2

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available