Author(s): Shalini Chinnasamy, Kowsaliya E, Suresh Malakondaiah, Ramesh Babu P. B, Mukesh Kumar Dharmalingam Jothinathan, Motcha Rakkini Visuvasam

Email(s): loyola123suresh@gmail.com

DOI: 10.52711/0974-360X.2025.00249   

Address: Shalini Chinnasamy1, Kowsaliya E2, Suresh Malakondaiah3, Ramesh Babu P. B3, Mukesh Kumar Dharmalingam Jothinathan4, Motcha Rakkini Visuvasam5
1Department of Genetic Engineering, Bharath Institute of Science and Technology. Chennai.
2Avigen Biotech Pvt. Ltd. Chennai. India.
3Center for Material Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai. India.
4Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India.
5LISSTAR, Loyola College, Chennai, Tamil Nadu, India.
*Corresponding Author

Published In:   Volume - 18,      Issue - 4,     Year - 2025


ABSTRACT:
Nowadays, significant advancements in nanoscience and nanotechnology make it possible to create designed nanoparticles with a variety of shapes, sizes, and morphologies. Owing to the extensive array of industrial, medical, and therapeutic uses of gold nanoparticles (AuNPs), apprehensions over the environmental safety and potential health effects have arisen. In this work, floral extracts from popular foods such as walnut, tamarind, peanut, almond, and pista were used to create Au nanoparticles by the green approach. Standard physiochemical methods such as energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), and UV-visible spectroscopy were used to describe them. We looked at the physiochemical characterisation of AuNP, and our results offered significant physicochemical characterization for enhancing the nutraceutical effects of these edible food ingredients.


Cite this article:
Shalini Chinnasamy, Kowsaliya E, Suresh Malakondaiah, Ramesh Babu P. B, Mukesh Kumar Dharmalingam Jothinathan, Motcha Rakkini Visuvasam. Physicochemical Analysis of Green Synthesis Gold Nanoparticles of Edible Plant Extracts. Research Journal of Pharmacy and Technology. 2025;18(4):1739-2. doi: 10.52711/0974-360X.2025.00249

Cite(Electronic):
Shalini Chinnasamy, Kowsaliya E, Suresh Malakondaiah, Ramesh Babu P. B, Mukesh Kumar Dharmalingam Jothinathan, Motcha Rakkini Visuvasam. Physicochemical Analysis of Green Synthesis Gold Nanoparticles of Edible Plant Extracts. Research Journal of Pharmacy and Technology. 2025;18(4):1739-2. doi: 10.52711/0974-360X.2025.00249   Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-4-40


REFERENCES:
1.    Lipińska, W., Grochowska, K., and Siuzdak, K. Enzyme immobilization on gold nanoparticles for electrochemical glucose biosensors. Nanomaterials. 2021; 11(5): 1156.
2.    Luo, D., Wang, X., Burda, C., and Basilion, J. P. Recent development of gold nanoparticles as contrast agents for cancer diagnosis. Cancers. 2021; 13(8:, 1825.
3.    Sani, A., Cao, C., and Cui, D. Toxicity of gold nanoparticles (AuNPs): A review. Biochemistry and biophysics reports. 2021; 26: 100991.
4.    Al-Khattaf, F. S.). Gold and silver nanoparticles: Green synthesis, microbes, mechanism, factors, plant disease management and environmental risks. Saudi Journal of Biological Sciences. 2021; 28(6): 3624-3631.
5.    Mao, L., Chen, Z., Wang, Y., and Chen, C. Design and application of nanoparticles as vaccine adjuvants against human corona virus infection. Journal of Inorganic Biochemistry. 2021; 219: 111454.
6.    Zahra, Q. U. A., Luo, Z., Ali, R., Khan, M. I., Li, F., and Qiu, B. Advances in gold nanoparticles-based colorimetric aptasensors for the detection of antibiotics: an overview of the past decade. Nanomaterials. 2021; 11(4): 840.
7.    Akintelu, S. A., Yao, B., and Folorunso, A. S. Bioremediation and pharmacological applications of gold nanoparticles synthesized from plant materials. Heliyon. 2021; 7(3).
8.    S. Bose, H. Shinde, K. Karikalan, P. Lalitha, A. K. A. Mandal. Antibacterial, Antiinflamatory, and Antiproliferative Activity of Silver Nanoparticles Synthesized from Leaf Extract of Azadirachta indica A. Juss. Research J. Pharm. and Tech. 2016; 9(12): 2422-2426.
9.    S. Asha, P. Thirunavukkarasu, S. Rajeshkumar. Green Synthesis of Silver Nanoparticles using Mirabilis jalapa Aqueous Extract and their Antibacterial Activity against Respective Microorganisms. Research J. Pharm. and Tech. 2017; 10(3): 811-817.
10.    Patil, S., and Chandrasekaran, R. Biogenic nanoparticles: A comprehensive perspective in synthesis, characterization, application and its challenges. Journal of Genetic Engineering and Biotechnology. 2020; 18(1): 67.
11.    Ceci, C., Graziani, G., Faraoni, I., and Cacciotti, I. Strategies to improve ellagic acid bioavailability: from natural or semisynthetic derivatives to nanotechnological approaches based on innovative carriers. Nanotechnology. 2020; 31(38): 382001.
12.    d’Amora, M., Liendo, F., Deorsola, F. A., Bensaid, S., and Giordani, S. Toxicological profile of calcium carbonate nanoparticles for industrial applications. Colloids and Surfaces B: Biointerfaces. 2020; 190: 110947.
13.    U.Kanagavalli, A. Mohamed Sadiq, Sathishkumar, S. Rajeshkumar. Plant Assisted Synthesis of Silver Nanoparticles Using Boerhaavia diffusa Leaves Extract and Evolution of Antibacterial Activity. Research J. Pharm. and Tech. 2016; 9(8): 1064-1068
14.    Soumya Menon, Happy Agarwal, S. Rajeshkumar, S. Venkat Kumar. Anticancer assessment of biosynthesized silver nanoparticles using Mucuna pruriens seed extract on Lung Cancer Treatment. Research J. Pharm. and Tech. 2018; 11(9): 3887-3891.
15.    Happy Agarwal, Soumya Menon, S. Rajeshkumar, S. Venkat Kumar. Green Synthesis of Silver Nanoparticle using Kalanchoe pinnata leaf extract and its Antibacterial Effect against Gram-Positive and Gram-Negative Species. Research J. Pharm. and Tech. 2018; 11(9):3964-3968
16.    Tang, D., Yuan, R., Chai, Y., Zhong, X., Liu, Y., and Dai, J. Electrochemical detection of hepatitis B surface antigen using colloidal gold nanoparticles modified by a sol–gel network interface. Clinical Biochemistry. 2006; 39(3): 309-314.
17.    B.S. Naveen Prasad, TVN. Padmesh, V. Ganesh Kumar, K. Govindaraju. Seaweed (Sargassum wightii Greville) assisted green synthesis of palladium nanoparticles. Research J. Pharm. and Tech. 2015; 8(4): 392-394.
18.    Justina Daphne, Asha Francis, Ria Mohanty, Nupur Ojha, Nilanjana Das. Green Synthesis of Antibacterial Silver Nanoparticles using Yeast Isolates and its Characterization. Research J. Pharm. and Tech. 2018; 11(1): 83-92
19.    Perumal Andal, S. Tamilselvy, P. Indra Priyatharesini. Green Synthesis of Silver Nanoparticles from Carrot. Research J. Pharm. and Tech. 2018; 11(7): 2757-2760.
20.    Marwah Amer Qamandar, Maan Abdul Azeez Shafeeq. Green Synthesis of Silver Nanoparticles by Fungus Beauveria bassiana and their Characteristics. Research J. Pharm. and Tech. 2018; 11(5): 1718-1724.




Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available