Author(s): A.K. Sadanov, B.B. Baymakhanova, I.A. Ratnikova, S.E. Orazymbet, L.Ye. Protasyuk, A.D. Massirbaeva, A.S. Balgimbayeva, L.P. Trenozhnikova, G.B. Baymakhanova, A. Amangeldy, A. Omirbekova

Email(s): amankeldi.sadanov@yandex.ru

DOI: 10.52711/0974-360X.2025.00245   

Address: A.K. Sadanov*, B.B. Baymakhanova, I.A. Ratnikova, S.E. Orazymbet, L.Ye. Protasyuk, A.D. Massirbaeva, A.S. Balgimbayeva, L.P. Trenozhnikova, G.B. Baymakhanova, A. Amangeldy, A. Omirbekova
Scientific and Production Center for Microbiology and Virology, 105 Bogenbai Batyr str., Almaty, 050010, Kazakhstan.
*Corresponding Author

Published In:   Volume - 18,      Issue - 4,     Year - 2025


ABSTRACT:
One of the main problems in the production of probiotic preparations is biomass production preserving the initial properties of the selected strain or strain association. The study aimed to develop a production technology for an active pharmaceutical substance (APS) to produce a medicinal probiotic preparation to treat acute intestinal infections. A study conducted in 2023 in the laboratory of Industrial Microbiology LLP used Lactobacillus fermentum 30 and Lactobacillus cellobiosus 36 strains cultivated in a liquid medium at 37°C to produce APS, evaluating their antagonistic activity and the absence of bacteriophages. Quality control included pH measurement, sequencing of microorganisms, determination of the number of viable cells, and testing of antagonistic activity by diffusion in agar. The APS included an association of probiotic lactic acid bacteria L. fermentum 30 and L. cellobiosus 36, which has high antagonistic activity against pathogens of human intestinal infections. The production technology for APS based on the co-cultivation of L. fermentum 30 and L. cellobiosus 36 strains by periodic fermentation can be used to produce probiotic medicinal preparations based on the association of lactic acid bacteria.


Cite this article:
A.K. Sadanov, B.B. Baymakhanova, I.A. Ratnikova, S.E. Orazymbet, L.Ye. Protasyuk, A.D. Massirbaeva, A.S. Balgimbayeva, L.P. Trenozhnikova, G.B. Baymakhanova, A. Amangeldy, A. Omirbekova. Active Pharmaceutical Substance Production Technology using Lactobacillus fermentum and Lactobacillus cellobiosus for the treatment of Intestinal Infections. Research Journal of Pharmacy and Technology. 2025;18(4):1709-7. doi: 10.52711/0974-360X.2025.00245

Cite(Electronic):
A.K. Sadanov, B.B. Baymakhanova, I.A. Ratnikova, S.E. Orazymbet, L.Ye. Protasyuk, A.D. Massirbaeva, A.S. Balgimbayeva, L.P. Trenozhnikova, G.B. Baymakhanova, A. Amangeldy, A. Omirbekova. Active Pharmaceutical Substance Production Technology using Lactobacillus fermentum and Lactobacillus cellobiosus for the treatment of Intestinal Infections. Research Journal of Pharmacy and Technology. 2025;18(4):1709-7. doi: 10.52711/0974-360X.2025.00245   Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-4-36


REFERENCES:
1.    Wang Y, Huang Y, Chase RC, Li T, Ramai D, Li S, Huang X, Antwi SO, Keaveny AP, Pang M. Global burden of digestive diseases: a systematic analysis of the global burden of diseases study, 1990 to 2019. Gastroenterology. 2023; 165(3): 773-83.e15. doi: 10.1053/j.gastro.2023.05.050
2.    Safeena Beevi S S, Biju Pottakkat, Sankar Narayanan. Role of Probiotics and Gut microbiota in Liver Diseases. Asian Journal of Nursing Education and Research. 2023; 13(2): 157-1.
3.    GBD 2016 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017; 390(10100): 1151-210. doi: 10.1016/S0140-6736(17)32152-9
4.    Farfán-García AE, Imdad A, Zhang C, Arias-Guerrero MY, Sánchez-Álvarez NT, Iqbal J, Hernández-Gamboa AE, Slaughter JC, Gómez-Duarte OG. Etiology of acute gastroenteritis among children less than 5 years of age in Bucaramanga, Colombia: a case-control study. PLOS Neglected Tropical Diseases. 2020; 14(6):e0008375. doi: 10.1371/journal.pntd.0008375
5.    Alexandridou M, Cattaert T, Verstraeten T. Estimation of risk of death attributable to acute gastroenteritis not caused by clostridioides difficile infection among hospitalized adults in England. Clinical Epidemiology. 2021 Apr 23; 13:309-15. doi: 10.2147/CLEP.S296516
6.    Baibosynov DM, Turebayeva GO, Kulzhanova ShA, Igisinov NS, Bilyalova ZA. Geograficheskaya variabelnost zabolevaemosti ostrymi kishechnymi infektsiyami v Kazakhstane [Geographical variability of the incidence of acute intestinal infections in Kazakhstan]. Meditsina. 2019; 5(203): 26-31.
7.    Venkata Kumar Sahu, Rajiv Sethi. Preprobiotics and Ayurvedic Ingredients for Halitosis Treatment: A Review. Asian Journal of Pharmaceutical Research. 2024; 14(1): 87-9.
8.    Fernandez-Cassi X, Martínez-Puchol S, Silva-Sales M, Cornejo T, Bartolome R, Bofill-Mas S, Girones R. Unveiling viruses associated with gastroenteritis using a metagenomics approach. Viruses. 2020; Dec 13; 12(12): 1432. doi: 10.3390/v12121432
9.    Negrut N, Khan ShA, Bungau S, Zaha DC, Anca CAR, Bratu O, Diaconu CC, Ionita-Radu F. Diagnostic challenges in gastrointestinal infections. Romanian Journal of Military Medicine. 2020; 123: 83-90. doi: 10.55453/rjmm.2020.123.2.1
10.    Fleckenstein JM, Kuhlmann FM, Sheikh A. Acute bacterial gastroenteritis. Gastroenterology Clinics. 2021; 50(2):283-304. doi: 10.1016/j.gtc.2021.02.002
11.    Ranasinghe S, Fhogartaigh CN. Bacterial gastroenteritis. Medicine. 2021; Sep 25; 49(11): 687-93. doi: 10.1016/j.mpmed.2021.08.002
12.    Collins JP, King LM, Collier SA, Person J, Gerdes ME, Crim SM, Bartoces M, Fleming-Dutra KE, Friedman CR, Francois Watkins LK. Antibiotic prescribing for acute gastroenteritis during ambulatory care visits—United States, 2006–2015. Infection Control and Hospital Epidemiology. 2022; 43(12): 1880-9. doi: 10.1017/ice.2021.522
13.    Principi N, Gnocchi M, Gagliardi M, Argentiero A, Neglia C, Esposito S. Prevention of Clostridium difficile infection and associated diarrhea: an unsolved problem. Microorganisms. 2020; 8(11):1640. doi: 10.3390/microorganisms8111640
14.    Church NA, McKillip JL. Antibiotic resistance crisis: challenges and imperatives. Biologia. 2021; 76(5):1535-50. doi: 10.1007/s11756-021-00697-x
15.    De Filippis F, Paparo L, Nocerino R, Gatta GD, Carucci L, Russo R, Pasolli E, Ercolini D, Canani RB. Specific gut microbiome signatures and the associated pro-inflammatory functions are linked to pediatric allergy and acquisition of immune tolerance. Nature Communications. 2021; 12(1): 5958. doi: 10.1038/s41467-021-26266-z
16.    Attur M, Scher JU, Abramson SB, Attur M. Role of intestinal dysbiosis and nutrition in rheumatoid arthritis. Cells. 2022; Aug 5; 11(15):2436. doi: 10.3390/cells11152436
17.    Aron-Wisnewsky J, Warmbrunn MV, Nieuwdorp M, Clément K. Metabolism and metabolic disorders and the microbiome: the intestinal microbiota associated with obesity, lipid metabolism, and metabolic health—pathophysiology and therapeutic strategies. Gastroenterology. 2021; 160(2): 573-99. doi: 10.1053/j.gastro.2020.10.057
18.    Maskarinec G, Raquinio P, Kristal BS, Setiawan VW, Wilkens LR, Franke AA, Lim U, Le Marchand L, Randolph TW, Lampe JW, Hullar MAJ. The gut microbiome and type 2 diabetes status in the Multiethnic Cohort. PLoS One. 2021; 16(6):e0250855. doi: 10.1371/journal.pone.0250855
19.    Zhang S, Cai Y, Meng C, Ding X, Huang J, Luo X, Cao Y, Gao F, Zou M. The role of the microbiome in diabetes mellitus. Diabetes Research and Clinical Practice. 2021; 172: 108645. doi: 10.1016/j.diabres.2020.108645
20.    Cullin N, Azevedo Antunes C, Straussman R, Stein-Thoeringer CK, Elinav E. Microbiome and cancer. Cancer Cell. 2021; Oct 11; 39(10): 1317-41. doi: 10.1016/j.ccell.2021.08.006
21.    Rebersek M. Gut microbiome and its role in colorectal cancer. BMC cancer. 2021; Dec 11; 21(1): 1325. doi: 10.1186/s12885-021-09054-2
22.    Ranjbar M, Salehi R, Haghjooy Javanmard S, Rafiee L, Faraji H, Jafarpor S, Ferns GA, Ghayour-Mobarhan M, Manian M, Nedaeinia R. The dysbiosis signature of Fusobacterium nucleatum in colorectal cancer-cause or consequences? A systematic review. Cancer Cell International. 2021; 21(1): 194. doi: 10.1186/s12935-021-01886-z
23.    Pane K, Boccella S, Guida F, Franzese M, Maione S, Salvatore M. Role of gut microbiota in neuropathy and neuropathic pain states: a systematic preclinical review. Neurobiology of Disease. 2022; 170: 105773. doi: 10.1016/j.nbd.2022.105773
24.    Ding W, You Z, Chen Q, Yang L, Doheny J, Zhou X, Li N, Wang S, Hu K, Chen L, Xia S, Wu X, Wang C, Zhang C, Chen L, Ritchie C, Huang P, Mao J, Shen S. Gut microbiota influences neuropathic pain through modulating proinflammatory and anti-inflammatory T cells. Anesthesia and Analgesia. 2021; 132(4):1146-55. doi: 10.1213/ANE.0000000000005155
25.    Sumich A, Heym N, Lenzoni S, Hunter K. Gut microbiome-brain axis and inflammation in temperament, personality and psychopathology. Current Opinion in Behavioral Sciences. 2022; 44: 101101. doi: 10.1016/j.cobeha.2022.101101
26.    Waill A. Elkhateeb, Dina E. El-Ghwas, Abdu Ghalib Al kolaibe, Muhammad Akram, Ghoson M. Daba. The Superiority of Yeast Secondary Metabolites, from Industrial applications, Biological activities to Pharmaceutical potential. Research Journal of Pharmacognosy and Phytochemistry. 2022; 14(1): 43-9.
27.    Iqbal Z, Ahmed Sh, Tabassum N, Bhattacharya R, Bose D. Role of probiotics in prevention and treatment of enteric infections: a comprehensive review. 3 Biotech. 2021; 11(5): 242. doi: 10.1007/s13205-021-02796-7
28.    Shalini Singh, Sujata Das. Evaluation of Market Curd for Sanitary Quality and Bacteriocin-Producing Lactic acid Bacteria for Potential Application as a Natural, Healthy Food Preservative. Research J. Pharm. and Tech. 2017; 10(4): 1029-1033.
29.    Compare D, Sgamato C, Nardone OM, Rocco A, Coccoli P, Laurenza C, Nardone G. Probiotics in gastrointestinal diseases: all that glitters is not gold. Digestive Diseases. 2022; 40(1): 123-32. doi: 10.1159/000516023
30.    Silva DR, Sardi JDCO, de Souza Pitangui N, Roque SM, Silva ACBD, Rosalen PL. Probiotics as an alternative antimicrobial therapy: current reality and future directions. Journal of Functional Foods. 2020; 73: 104080. doi: 10.1016/j.jff.2020.104080
31.    Lukasik J, Guo Q, Boulos L, Szajewska H, Johnston BC. Probiotics for the prevention of antibiotic-associated adverse events in children—a scoping review to inform development of a core outcome set. PLoS One. 2020; 15(5):e0228824. doi: 10.1371/journal.pone.0228824
32.    Fenster K, Freeburg B, Hollard C, Wong C, Rønhave Laursen R, Ouwehand AC. The production and delivery of probiotics: a review of a practical approach. Microorganisms. 2019; Mar 17; 7(3):83. doi: 10.3390/microorganisms7030083
33.    Gavrilova NN, Ratnikova IA, Sadanov AK, Orasymbet SE, Shorabaev EZh, Kaptagai RZ. Selection of an active association of probiotic bacteria and the optimal composition of the nutrient medium for cultivation to increase therapeutic and prophylactic effectiveness of a medicinal probiotic preparation against intestinal infections. Research Journal of Pharmacy and Technology. 2023; 16(5): 2427-35. doi: 10.52711/0974-360X.2023.00400
34.    Gavrilova NN, Ratnikova IA, Sadanov AK, Orasymbet SE, Shorabaev EZh, Protasiuk LE. Development of technology for the production of finished forms of medicinal probiotics. Research Journal of Pharmacy and Technology. 2023; 16(9): 4093-104. doi: 10.52711/0974-360X.2023.00670
35.    Md Kamal Hossain, Kamrun Nahar, Parisa Shokryazdan, Norhani Abdullah, Kaiser Hamid, Mohammed Faseleh Jahromi. Probiotic Potential of Lactic Acid Bacteria Isolated from Cheese, Yogurt and Poultry Faeces. Research J. Pharm. and Tech. 2017; 10(9): 2991-2998.
36.    M. Karthik Raju, B. Suresh Chander Kapali, G. V. Jason JebaSingh, Y. Subathra, A. Dernita Maria Nithya. Isolation, Characterization and Sequencing of Lactobacillus from the Oral and Fecal Samples of Healthy Dogs. Research J. Pharm. and Tech. 2018; 11(11): 5061-5065.
37.    Grumet L, Tromp Y, Stiegelbauer V. The development of high-quality multispecies probiotic formulations: from bench to market. Nutrients. 2020; 12(8):2453. doi: 10.3390/nu12082453
38.    Anbarasu Sivaraj, Vanaja Kumar, Revathy Kalyanasundaram, Govindaraju Kasivelu. Biogenic production of Gold nanoparticles using Lactic acid bacteria and their Anti-mycobacterial activity. Research J. Pharm. and Tech. 2020; 13(9):4391-4394.
39.    Abdelmoneim E, Refat E, James K, Alnajmalthageb M, Dia eldein S, Mekaiel MA, Eltegani SEA. Evolution of the use and manufacturing of lactic acid bacteria probiotic and its effect on human health. European Journal of Biomedical and Pharmaceutical Sciences. 2022; 9(9): 1-27.
40.    Kumar V, Naik B, Kumar A, Khanduri N, Rustagi S, Kumar S. Probiotics media: significance, challenges, and future perspective-a mini review. Food Production, Processing and Nutrition. 2022; 4(1): 17. doi: 10.1186/s43014-022-00098-w
41.    Wang T, Lu Y, Yan H, Li X, Wang X, Shan Y, Yi Y, Liu B, Zhou Y, Lü X. Fermentation optimization and kinetic model for high cell density culture of a probiotic microorganism: Lactobacillus rhamnosus LS-8. Bioprocess and Biosystems Engineering. 2020; 43(3): 515-28. doi: 10.1007/s00449-019-02246-y
42.    Millán M, Gutierrez D, Rodriguez-Fragoso L, Reyes-Esparza J. Effect of temperature, pH and stirring speed on growth and cell viability of Probioticbacterium Lactobacillus Plantarum. Microbiology and Infectious Diseases. 2019; 3(4): 1-4.
43.    Forssten SD, Laitila A, Maukonen J, Ouwehand AC. Probiotic triangle of success; strain production, clinical studies and product development. FEMS Microbiology Letters. 2020; 367(19): fnaa167. doi: 10.1093/femsle/fnaa167
44.    Bolivar-Jacobo NA, Reyes-Villagrana RA, Rentería-Monterrubio AL, Sánchez-Vega R, Santellano-Estrada E, Tirado-Gallegos JM. Culture age, growth medium, ultrasound amplitude, and time of exposure influence the kinetic growth of Lactobacillus acidophilus. Fermentation. 2023; 9(1): 63. doi: 10.3390/fermentation9010063
45.    Bisson G, Maifreni M, Innocente N, Marino M. Application of pre-adaptation strategies to improve the growth of probiotic lactobacilli under food-relevant stressful conditions. Food and Function. 2023 Feb 21; 14(4):2128-37. doi: 10.1039/d2fo03215e
46.    Nina Nikolaevna Gavrilova, Irina Alexandrovna Ratnikova, Amankeldi Kurbanovich Sadanov, Saltanat Emilievna Orasymbet, Yerik Zharylkasynovich Shorabaev, Raushan Zhumabekovna Kaptagai. Selection of an active association of Probiotic bacteria and the Optimal composition of the Nutrient medium for Cultivation to increase the Therapeutic and Prophylactic effectiveness of a Medicinal probiotic preparation against Intestinal infections. Research Journal of Pharmacy and Technology 2023; 16(5):Research Journal of Pharmacy and Technology. 2023; 16(5):2427-5.
47.    M. Ezhumalai, G. Hemalatha, J.P. Poornima, K.V. Pugalendi. Inhibition of Lactobacillus growth by amino acids and phytochemicals in the fermentation of curd by disc diffusion method. Asian J. Pharm. Res. 2013; 3(4): 189-193.
48.    Iif Hanifa Nurrosyidah, Ni Made Mertaniasih, Isnaeni Isnaeni. Antibacterial Activity of Probiotics Cell-Free Fermentation Filtrate from Passiflora edulis Sims. againts Pathogen bacteria. Research Journal of Pharmacy and Technology. 2022; 15(12):5767-3.
49.    Rawoof SAA, Kumar PS, Vo DVN, Devaraj K, Mani Y, Devaraj T, Subramanian S. Production of optically pure lactic acid by microbial fermentation: a review. Environmental Chemistry Letters. 2021; 19: 539-56. doi: 10.1007/s10311-020-01083-w
50.    de Oliveira PM, Santos LP, Coelho LF, Avila Neto PM, Sass DC, Contiero J. Production of L (+) lactic acid by Lactobacillus casei Ke11: fed batch fermentation strategies. Fermentation. 2021; 7(3):151. doi: 10.3390/fermentation7030151
51.    Evdokimova SA, Karetkin BA, Guseva EV, Gordienko MG, Khabibulina NV, Panfilov VI, Menshutina NV, Gradova NB. A study and modeling of bifidobacterium and Bacillus coculture continuous fermentation under distal intestine simulated conditions. Microorganisms. 2022; 10(5): 929. doi: 10.3390/microorganisms10050929
52.    Hathi Z, Mettu S, Priya A, Athukoralalage S, Lam TN, Choudhury NR, Dutta NK, El-Omar EM, Gong L, Mohan G, Lin, CSK. Methodological advances and challenges in probiotic bacteria production: ongoing strategies and future perspectives. Biochemical Engineering Journal. 2021; 176: 108199. doi: 10.1016/j.bej.2021.108199
53.    Tan JM, Rashid R, Esivan SMM, Zaharudin NA. Effects of initial rice bran concentration and inoculum's ratio on microbial growth of co-culture fermentation. Journal of Bioprocessing and Biomass Technology. 2022; 1(1): 49-56. doi: 10.11113/bioprocessing.v1n1.10
54.    Kurt F, Leventhal GE, Spalinger MR, Anthamatten L, Rogalla von Bieberstein P, Menzi C, Reichlin M, Meola M, Rosenthal F, Rogler G, Lacroix C, de Wouters T. Co-cultivation is a powerful approach to produce a robust functionally designed synthetic consortium as a live biotherapeutic product (LBP). Gut Microbes. 202; 15(1): 2177486. doi: 10.1080/19490976.2023.2177486
55.    Ramazanova AA, Yernazarova GI, Turasheva SK, Ablaikhanova NT. Determination of the content of biologically active substances in some aquatic higher plants. Pakistan Journal of Botany. 2021; 53(5):1893-9. doi: 10.30848/PJB2021-5(23)
56.    Yernazarova GI, Ramazanova AA, Turasheva SK, Almalki FA, Hadda TB, Orazova SB, Madenova AK, Admanova GB, Korulkin DYu, Sabdenalieva GM, Naimi S, Bukharbayeva Zh, Amangeldinova ME. Extraction, purification and characterisation of four new alkaloids from the water plant Pistia stratiotes: POM analyses and identification of potential pharmacophore sites. Research Journal of Pharmacy and Technology. 2023; 16(7): 3410-6. doi: 10.52711/0974-360X.2023.00564
57.    OFS.1.7.2.0009.15 Opredeleniye spetsificheskoy aktivnosti probiotikov [OFS.1.7.2.0009.15 Determination of specific activity of probiotics]. Farmakopeya.rf. Available at: https://pharmacopoeia.ru/ofs-1-7-2-0009-15-opredelenie-spetsificheskoj-aktivnosti-probiotikov/ (accessed on December 7, 2023).
58.    Paulova L, Chmelik J, Patakova P, Drahokoupil M, Melzoch K. Comparison of lactic acid production by L. casei in batch, fed-batch and continuous cultivation, testing the use of feather hydrolysate as a complex nitrogen source. Brazilian Archives of Biology and Technology. 2020; 63: e20190151. doi: 10.1590/1678-4324-2020190151
59.    Jin Q, An Z, Damle A, Poe N, Wu J, Wang H, Wang Z, Huang H. High acetone-butanol-ethanol production from food waste by recombinant clostridium saccharoperbutylacetonicum in batch and continuous immobilized-cell fermentation. ACS Sustainable Chemistry and Engineering. 2020; 8(26): 9822-32. doi: 10.1021/acssuschemeng.0c02529
60.    Wang Y, Chen M, Xu J, Qi N, Dong L, Cao G, Zhao X. Potential and characteristics of bio-H2 production from brewery wastewater by a maltose-preferring butyrate-type producer: Investigation in batch and semi-continuous cultures. Environmental Research. 2022; 205: 112457. doi: 10.1016/j.envres.2021.112457
61.    Selvamani S, Ramli S, Dailin DJ, Natasya KH, Varzakas T, Abomoelak B, Sukmawati D, Nurjayadi M, Liu S, Gupta VK, El Enshasy HA. Extractive fermentation as a novel strategy for high cell mass production of hetero-fermentative probiotic strain Limosilactobacillus reuteri. Fermentation. 2022; 8(10): 527. doi: 10.3390/fermentation8100527
62.    Perkovic L, Djedović E, Vujovic T, Baković M, Paradžik T, Coz-Rakovac R. Biotechnological enhancement of probiotics through co-cultivation with algae: future or a trend? Marine Drugs. 2022; 20(2): 142. doi: 10.3390/md20020142
63.    Lu J, Lv Y, Qian X, Jiang Y, Wu M, Zhang W, Zhou J, Dong W, Xin F, Jiang M. Current advances in organic acid production from organic wastes by using microbial co‐cultivation systems. Biofuels, Bioproducts and Biorefining. 2020; 14(2): 481-92. doi: 10.1002/bbb.2075


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available