Author(s): Norhayati, Juni Ekowati, Nuzul Wahyuning Diyah, Gusti Rizaldi, Samar Ahmed

Email(s): juni-e@ff.unair.ac.id

DOI: 10.52711/0974-360X.2025.00233   

Address: Norhayati1,4, Juni Ekowati2,3*, Nuzul Wahyuning Diyah2,3, Gusti Rizaldi4, Samar Ahmed5,6
1Master Program in Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, 60115, Indonesia.
2Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, 60115, Indonesia.
3Drug Development Research Group, Faculty of Pharmacy, Universitas Airlangga, 60115, Indonesia.
4Departement of Pharmacy, Faculty of Pharmacy, Universitas Borneo Lestari, 70714, Indonesia.
5Master Degree in Innovation and Enterpreneurship, Warwick Manufacturing Group, University of Warwick, CV1 3LD, United Kingdom.
6Egy Herbal Factory, Fayoum, Kom Oshim, 63711, Egypt.
*Corresponding Author

Published In:   Volume - 18,      Issue - 4,     Year - 2025


ABSTRACT:
One of the deadliest diseases in worldwide was coronary heart disease caused 9.1 million deaths in 2021, which can be brought on by plaque accumulation on the artery walls. This plaque causes the arteries to narrow and restrict blood flow, which might result in blood clots (thrombosis). Aspirin treatment may induce adverse consequences on gastrointestinal health. Vanillin was reported to show anti-platelet aggregation activity in vitro induced by arachidonic acid, but it was lower than aspirin. So, it needs to be modified to increase its activity as anti-thrombotic and support good health and well being. The study aims to modify the structure of vanillin, in order to enhance their activity as anti-thrombotic agents. This research modified vanillin structures based on their lipophilic and electronic properties, and carried out molecular docking using the AutoDock 1.5.7 program for inhibitory activity against P2Y12 receptor. Three selected compounds were obtained to be synthesized using a microwave method with a triethylamine catalyst. The synthesized compounds were characterized by FTIR and UV-Vis spectrophotometer, 1H-NMR and 13C-NMR spectrometers, melting point apparatus, and in vivo studies to evaluate their anti-thrombotic activity by clotting time and bleeding time methods in three separate doses. According to the calculation of ?G and Ki values, it was observed that all vanillin analogs had the potential for more effective anti-thrombotic activity than aspirin and clopidogrel. In addition, the results of in vivo studies indicated that three synthesized compounds showed better anti-thrombotic activity compared to the aspirin. The administration of 4-formyl-2-methoxyphenyl 4-methylbenzoate (V2) at 160 mg demonstrated the highest activity. These results suggested that V2 is the most promising compound for prospective use as an anti-thrombotic drug.


Cite this article:
Norhayati, Juni Ekowati, Nuzul Wahyuning Diyah, Gusti Rizaldi, Samar Ahmed. In silico and In vivo approach to Discovery and Development Vanillin Derivatives as Anti-Thrombotic Agent. Research Journal of Pharmacy and Technology. 2025;18(4):1625-3. doi: 10.52711/0974-360X.2025.00233

Cite(Electronic):
Norhayati, Juni Ekowati, Nuzul Wahyuning Diyah, Gusti Rizaldi, Samar Ahmed. In silico and In vivo approach to Discovery and Development Vanillin Derivatives as Anti-Thrombotic Agent. Research Journal of Pharmacy and Technology. 2025;18(4):1625-3. doi: 10.52711/0974-360X.2025.00233   Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-4-24


REFERENCES:
1.    Liang C, Zhang W, Li S, Qin G. Coronary heart disease and COVID-19: A meta-analysis. Med Clin (Barc). 2021; Jun 11; 156(11): 547–54. doi: 10.1016/j.medcli.2020.12.017
2.    World Heart Federation (WHF). Global Heart and Circulatory Diseases Factsheet [Internet]. 2024 [cited 2024 Feb 5]. Available from: https://www.bhf.org.uk/
3.    Dalen JE, Alpert JS, Goldberg RJ, Weinstein RS. The epidemic of the 20th century: Coronary heart disease. American Journal of Medicine. Elsevier Inc. 2014; 127: 807–12. doi: 10.1016/j.amjmed.2014.04.015
4.    Mohapatra TK, Subudhi BB. Repurposing of aspirin: Opportunities and challenges. Vol. 12, Research Journal of Pharmacy and Technology. Research Journal of Pharmacy and Technology; 2019; 2037–44. doi: 10.5958/0974-360X.2019.00337.8
5.    Price MJ, Berger PB, Angiolillo DJ, Teirstein PS, Tanguay JF, Kandzari DE, et al. Evaluation of individualized clopidogrel therapy after drug-eluting stent implantation in patients with high residual platelet reactivity: Design and rationale of the GRAVITAS trial. Am Heart J. 2009; 157(5). doi: 10.1016/j.ahj.2009.02.012.
6.    Ng AKY, Ng PY, Ip A, Lau KK, Siu CW. Risk of ischaemic and haemorrhagic stroke in Chinese undergoing percutaneous coronary intervention treated with potent P2Y12 inhibitor versus clopidogrel. Stroke Vasc Neurol. 2022; Mar 9; svn-2021-001294. doi: 10.1136/svn-2021-001294
7.    Mansour A, Bachelot-Loza C, Nesseler N, Gaussem P, Gouin-Thibault I. P2y12 inhibition beyond thrombosis: Effects on inflammation. Vol. 21, International Journal of Molecular Sciences. MDPI AG; 2020. doi: 10.3390/ijms21041391
8.    Bittl JA, Laine L. Gastrointestinal Injury Caused by Aspirin or Clopidogrel Monotherapy Versus Dual Antiplatelet Therapy. Journal of the American College of Cardiology. 2022; 79:  129–31. doi: 10.1016/j.jacc.2021.10.027
9.    Qiao J, Arthur JF, Gardiner EE, Andrews RK, Zeng L, Xu K. Regulation of platelet activation and thrombus formation by reactive oxygen species. Redox Biol. 2018; 14(August 2017):126–30. DOI: 10.1016/j.redox.2017.08.021
10.    Zhang Y, Zhang S, Ding Z. Role of P2Y12 receptor in thrombosis. Adv Exp Med Biol. 2017; 906: 307–24. doi: 10.1007/5584_2016_123
11.    Ekowati J, Diyah NW, Nofianti KA, Hamid IS, Siswandono. Molecular docking of ferulic acid derivatives on P2Y12 receptor and their ADMET prediction. Journal of Mathematical and Fundamental Sciences. 2018; 50(2): 203–19. doi: 10.5614/j.math.fund.sci.2018.50.2.8
12.    Norhayati, Ekowati J, Diyah NW, Tejo BA, Ahmed S. Chemoinformatics approach to design and develop vanillin analogs as COX-1 inhibitor. J Public Health Afr. 2023; 14(S1). doi: 10.4081/jphia.2023.2517
13.    Vijayalakshmi S, Disalva X, Srivastava C, Arun A. Vanilla-Natural Vs Artificial: A Review. Res J Pharm Technol. 2019; 12(6): 3068. doi: 10.5958/0974-360X.2019.00520.1
14.    Lin WY, Kuo YH, Chang YL, Teng CM, Wang EC, Ishikawa T, et al. Anti-platelet aggregation and chemical constituents from the rhizome of Gynura japonica. Planta Med. 2003; Aug; 69(8): 757–64. doi: 10.1055/s-2003-42796
15.    Lin WY, Teng CM, Tsai IL, Chen IS. Anti-platelet aggregation constituents from Gynura elliptica. Phytochemistry. 2000; 53: 833–6. doi: 10.1016/S0031-9422(99)00599-3
16.    Battin SN, Manikshete AH, Sarasamkar SK, Asabe MR, Sathe DJ. Synthesis, Spectral, Antibacterial, Antifungal and Anticancer activity Studies of Schiff bases Derived from O-Vanillin and Aminoquinolines. Asian Journal of Research in Chemistry. 2017; 10(5): 660. doi:10.5958/0974-4150.2017.00112.2
17.    Fernandes CM, Pina VG, Alfaro CG, de Sampaio MT, Massante FF, Alvarez LX, Barrios AM, Silva JC, Alves OC, Briganti M, Totti F. Innovative characterization of original green vanillin-derived Schiff bases as corrosion inhibitors by a synergic approach based on electrochemistry, microstructure, and computational analyses. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2022 May 20; 641: 128540. doi: 10.1016/j.colsurfa.2022.128540
18.    Fayeulle A, Trudel E, Damiens A, Josse A, Youssef NB, Vigneron P, Vayssade M, Rossi C, Ceballos C. Antimicrobial and antioxidant activities of amines derived from vanillin as potential preservatives: Impact of the substituent chain length and polarity. Sustainable Chemistry and Pharmacy. 2021; Sep 1; 22: 100471. doi: 10.1016/j.scp.2021.100471
19.    Kadem KJ, Munahi MG. Synthesis, characterization and biological evaluation of some novel 1,3 oxazepine derivatives from vanillin schiff’s bases. Res J Pharm Technol. 2018; Sep 1; 11(9): 4047–50. doi: 10.5958/0974-360X.2018.00745.X
20.    Suryadi A, Siswodihardjo S, Widiandani T, Widyowati R. Structure modifications of pinostrobin from temu kunci (Boesenbergia pandurata roxb. schlecht) and their analgesic activity based on in silico studies. Res J Pharm Technol. 2021; Apr 1; 14(4): 2089–94. doi: 10.52711/0974-360X.2021.00370
21.    Zhang K, Zhang J, Gao Z guo, Zhang D, Zhu L, Han GW, et al. Structure of the human P2Y12 receptor in complex with an antithrombotic drug. Nature. 2015; 509(4): 115–8. doi: 10.1038/nature13083
22.    PerkinElmer I. Chemdraw [Internet]. Chemdraw Professional. 2020. Available from: http://www.perkinelmer.co.uk/category/chemdraw
23.    Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform. 2012; Dec 13; 4(1): 17. doi: 10.1186/1758-2946-4-17
24.    Ekowati J, Diyah NW, Syahrani A. Synthesis and antiplatelet activities of some derivatives of p-coumaric acid. Chemistry and Chemical Technology. 2019; 13(3): 296–302. doi: 10.23939/chcht13.03.296
25.    Eikelboom JW, Hirsh J, Spencer FA, Baglin TP, Weitz JI. Antiplatelet drugs - Antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2012; 141(2 SUPPL.):e89S-e119S. doi: 10.1378/chest.11-2293
26.    Marentek EC, Budiati T, Ekowati J. Synthesis and Antiplatelet Activity of 4-Hidroxy-3-Methoxycinnamic Acid. Jurnal Farmasi Dan Ilmu Kefarmasian Indonesia. 2022; 9(1): 32–8. doi: 10.20473/jfiki.v9i12022.32-38
27.    Xiao W, Wang D, Shen Z, Li S, Li H. Multi-body interactions in molecular docking program devised with key water molecules in protein binding sites. Molecules. 2018; 23(9). doi: 10.3390/molecules23092321
28.    Sahayarayan JJ, Rajan KS, Vidhyavathi R, Nachiappan M, Prabhu D, Alfarraj S, et al. In-silico protein-ligand docking studies against the estrogen protein of breast cancer using pharmacophore based virtual screening approaches. Saudi J Biol Sci. 2021; 28(1): 400–7. doi: 10.1016/j.sjbs.2020.10.023
29.    Mishra R, Mishra PS, Mazumder R, Mazumder A, Chaudhary A. Computational docking technique for drug discovery: A review. Vol. 14, Research Journal of Pharmacy and Technology. Research Journal of Pharmacy and Technology; 2021. p. 5558–62. doi: 10.52711/0974-360X.2021.00968
30.    Rahman F, Tabrez S, Ali R, Alqahtani AS, Ahmed MZ, Rub A. Molecular docking analysis of rutin reveals possible inhibition of SARS-CoV-2 vital proteins. J Tradit Complement Med. 2021; 11(2): 173–9. doi: 10.1016/j.jtcme.2021.01.006
31.    Kandeel M, Kitade Y. Computational analysis of siRNA recognition by the Ago2 PAZ domain and identification of the determinants of RNA-induced gene silencing. PloS one. 2013; Feb 18; 8(2): e57140. doi: 10.1371/journal.pone.0057140
32.    Norhayati, Ekowati J, Diyah NW, Tejo BA, Ahmed S. Chemoinformatics approach to design and develop vanillin analogs as COX-1 inhibitor. J Public Health Afr. 2023; 14(S1). doi: 10.4081/jphia.2023.2517
33.    Kabir E. Application of microwave heating in polymer synthesis: A review. Results Chem. 2023; 6(October): 101178. doi: 10.1016/j.rechem.2023.101178
34.    Yaqin IN, Ekowati J, Nofianti KA, Suzana S. Utilization of Microwaves Irradiation on Synthesis of Methyl ortho-Methoxycinnamate. Jurnal Sains Farmasi and Klinis. 2021; 8(2): 157. doi:10.25077/jsfk.8.2.157-163.2021
35.    Jayalakshmi PM, Sheeba Jasmin TS, Jose M. Microwave assisted synthesis and antibacterial evaluation of 1, 3, 4-thiadiazole derivatives. Res J Pharm Technol. 2021; 14(10): 5293–6. doi: 10.52711/0974-360X.2021.00923
36.    Li Y, Zhu H, Lei X, Zhang H, Guan C, Chen Z, Zheng W, Xu H, Tian Y, Yu Z, Zheng T. The first evidence of deinoxanthin from Deinococcus sp. Y35 with strong algicidal effect on the toxic dinoflagellate Alexandrium tamarense. Journal of Hazardous Materials. 2015; Jun 15; 290: 87-95. doi: 10.1016/j.jhazmat.2015.02.070
37.    Khalipova O, Kuznetsova S, Kozik V. The composition and structure of iron(III) complex compounds with salicylic acid in ethanol solution and in the solid thin film state. AIP Conf Proc. 2016; 1772(Iii). doi: 10.1063/1.4964529
38.    Agrawal B, Gupta BK, Sahu SK. Synthesis, Characterization and Biological Evaluation of some new Isoxazole and Pyrazole compounds for Anti-obesity drug. Res J Pharm Technol. 2023; Aug 31; 16(8): 3837–42. doi: 10.52711/0974-360X.2023.00633
39.    O’ JC, Young C. True Melting Point Determination. Chem Educator. 2013; 18(August): 203. doi: 10.1007/s00897132500
40.    Tang J, Wang J, Zhong G, Jiang H, Mo Y, Zhang B. Measurement report : Long-emission-wavelength chromophores dominate the light absorption of brown carbon in aerosols over Bangkok: impact from biomass burning. Atmos Chem Phys. 2021; 21: 11337–52. doi: 10.5194/acp-21-11337-2021
41.    Solomons TWG, Fryhle CB, Snyder SA. Organic Chemistry. 12th Ed. 2016. John Wiley & Sons. New York.
42.    John E. McMurry. Organic Chemistry 9th Ed. 2016. Cengage Learning 20 Channel Center Street Boston, MA 02210 USA.
43.    Ignjatovic V. Thrombin clotting time. Methods in Molecular Biology. 2013; 992: 131–8. doi: 10.1007/978-1-62703-339-8_10





Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available