Author(s): Waghamare S.U, Anurag Mishra, Khanage S.G

Email(s): waghasuresh@gmail.com

DOI: 10.52711/0974-360X.2025.00231   

Address: Waghamare S.U1, Anurag Mishra2, Khanage S.G3
1,2Department of Pharmaceutics of NIMS Institute of Pharmacy, NIMS University, Jaipur, Rajasthan, India - 302131.
3Department of Pharmaceutical Chemistry of Rashtriya College of Pharmacy Hatnoor, Tq, Kannad Dist. Chh. Sambhaji Nagar Maharashtra India - 431103.
*Corresponding Author

Published In:   Volume - 18,      Issue - 4,     Year - 2025


ABSTRACT:
Recent advancements in polymeric microparticle-based drug delivery systems offer a transformative approach to addressing the global health challenge of diabetes mellitus. With millions affected worldwide, especially in low- and middle-income countries, conventional treatments often fall short in efficacy, adherence, and minimizing systemic side effects. However, innovative drug delivery systems herald a paradigm shift in diabetes management. Polymeric microparticles provide a versatile platform with controlled drug release, targeted delivery, enhanced stability, and improved bioavailability. Choosing natural, synthetic, hybrid, or responsive polymers influences crucial properties like release kinetics and biocompatibility. Different preparation techniques, such as microfluidics and emulsion solvent evaporation, enable customized particle properties. Innovative strategies such as targeted delivery, sustained-release formulations, and combination therapies promise improved outcomes for diabetes patients. Polymeric microparticles can improve glycemic control; recent clinical trials have confirmed this. Looking forward, technologies like closed-loop artificial pancreas systems and precision medicine offer personalized and optimized care, paving the way for better management and potentially, the prevention and cure of diabetes mellitus. Through these advancements, researchers and clinicians aim to revolutionize diabetes treatment, alleviating its global burden on individuals and healthcare systems.


Cite this article:
Waghamare S.U, Anurag Mishra, Khanage S.G. Recent Advances in Polymeric Microparticles - Based Drug Delivery Systems for the Treatment of Diabetes. Research Journal of Pharmacy and Technology. 2025;18(4):1611-8. doi: 10.52711/0974-360X.2025.00231

Cite(Electronic):
Waghamare S.U, Anurag Mishra, Khanage S.G. Recent Advances in Polymeric Microparticles - Based Drug Delivery Systems for the Treatment of Diabetes. Research Journal of Pharmacy and Technology. 2025;18(4):1611-8. doi: 10.52711/0974-360X.2025.00231   Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-4-22


REFERENCE:
1.    Hossain MdJ, Al‐Mamun Md, Islam MdR. Diabetes mellitus, the fastest growing global public health concern: Early detection should be focused. Health Science Reports. 2024; 7(3): e2004. doi:10.1002/hsr2.2004
2.    Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J. Epidemiology of Type 2 Diabetes – Global Burden of Disease and Forecasted Trends: JEGH. 2019; 10(1): 107. doi:10.2991/jegh.k.191028.001
3.    Kaveeshwar S. The current state of diabetes mellitus in India. AMJ. 2014; 7(1): 45-48. doi:10.4066/AMJ.2014.1979
4.    Gassasse Z, Smith D, Finer S, Gallo V. Association between urbanization and type 2 diabetes: an ecological study. BMJ Glob Health. 2017; 2(4): e000473. doi:10.1136/bmjgh-2017-000473
5.    Panari H, Vegunarani M. Study on Complications of Diabetes Mellitus among the Diabetic Patients. Asia Jour Nurs Educ and Rese. 2016; 6(2): 171. doi:10.5958/2349-2996.2016.00032.X
6.    Hirschi KK, Li S, Roy K. Induced Pluripotent Stem Cells for Regenerative Medicine. Annu Rev Biomed Eng. 2014; 16(1): 277-294. doi:10.1146/annurev-bioeng-071813-105108
7.    Bretzel R, Hering B, Federlin K. Islet Cell Transplantation in Diabetes Mellitus — from Bench to Bedside. Exp Clin Endocrinol Diabetes. 2009; 103(S02):143-159. doi:10.1055/s-0029-1211413
8.    Lakshmi K. Effectiveness of Nursing care of antenatal mothers with Gestational diabetes mellitus. Asia Jour Nurs Educ and Rese. 2020; 10(3): 286. doi:10.5958/2349-2996.2020.00060.9
9.    Pfeiffer AFH, Klein HH. The Treatment of Type 2 Diabetes. Deutsches Ärzteblatt international. Published online January 31, 2014. doi:10.3238/arztebl.2014.0069
10.    McHugh KJ. Employing drug delivery strategies to create safe and effective pharmaceuticals for COVID-19. Bioengineering and Transla Med. 2020; 5(2): e10163. doi:10.1002/btm2.10163
11.    Artasensi A, Pedretti A, Vistoli G, Fumagalli L. Type 2 Diabetes Mellitus: A Review of Multi-Target Drugs. Molecules. 2020; 25(8): 1987. doi:10.3390/molecules25081987
12.    Dupont A, Guerain M, Danède F, et al. Kinetics and mechanism of polymorphic transformation of sorbitol under mechanical milling. International Journal of Pharmaceutics. 2020; 590: 119902. doi:10.1016/j.ijpharm.2020.119902
13.    Ilhami FB, Peng KC, Chang YS, et al. Photo-Responsive Supramolecular Micelles for Controlled Drug Release and Improved Chemotherapy. IJMS. 2020; 22(1): 154. doi:10.3390/ijms22010154
14.    Srinivas L, Manikanta V, Jaswitha M. Protein and Peptide Drug Delivery-A Brief Review. Rese Jour of Pharm and Technol. 2019; 12(3): 1369. doi:10.5958/0974-360X.2019.00230.0
15.    Vilos C, Velasquez LA. Therapeutic Strategies Based on Polymeric Microparticles. Journal of Biomedicine and Biotechnology. 2012; 2012: 1-9. doi:10.1155/2012/672760
16.    Gagliardi A, Giuliano E, Venkateswararao E, et al. Biodegradable Polymeric Nanoparticles for Drug Delivery to Solid Tumors. Front Pharmacol. 2021; 12: 601626. doi:10.3389/fphar.2021.601626
17.    Sivadasan D, Sultan MH, Madkhali O, Almoshari Y, Thangavel N. Polymeric Lipid Hybrid Nanoparticles (PLNs) as Emerging Drug Delivery Platform—A Comprehensive Review of Their Properties, Preparation Methods, and Therapeutic Applications. Pharmaceutics. 2021; 13(8): 1291. doi:10.3390/pharmaceutics13081291
18.    Santhamoorthy M, Vy Phan TT, Ramkumar V, Raorane CJ, Thirupathi K, Kim SC. Thermo-Sensitive Poly (N-isopropylacrylamide-co-polyacrylamide) Hydrogel for pH-Responsive Therapeutic Delivery. Polymers. 2022; 14(19): 4128. doi:10.3390/polym14194128
19.    Mady O. Application of solvent evaporation technique for pure drug crystal spheres preparation. Particuology. 2022; 67: 79-89. doi:10.1016/j.partic.2021.09.011
20.    Al-Samarai RA, Mahmood AS, Al-Douri Y. Surface modification, including polymerization, nanocoating, and microencapsulation. In: Metal Oxide Powder Technologies. Elsevier; 2020: 83-99. doi:10.1016/B978-0-12-817505-7.00005-1
21.    Naz FF, Shah KU, Niazi ZR, Zaman M, Lim V, Alfatama M. Polymeric Microparticles: Synthesis, Characterization and In Vitro Evaluation for Pulmonary Delivery of Rifampicin. Polymers. 2022; 14(12): 2491. doi:10.3390/polym14122491
22.    Chakravarty P, Famili A, Nagapudi K, Al-Sayah MA. Using Supercritical Fluid Technology as a Green Alternative During the Preparation of Drug Delivery Systems. Pharmaceutics. 2019; 11(12): 629. doi:10.3390/pharmaceutics11120629
23.    Vlachou M, Siamidi A, Kyriakou S. Electrospinning and Drug Delivery. In: Haider S, Haider A, eds. Electrospinning and Electrospraying - Techniques and Applications. IntechOpen; 2019. doi:10.5772/intechopen.86181
24.    Tapia-Hernández JA, Torres-Chávez PI, Ramírez-Wong B, et al. Micro- and Nanoparticles by Electrospray: Advances and Applications in Foods. J Agric Food Chem. 2015; 63(19): 4699-4707. doi:10.1021/acs.jafc.5b01403
25.    Makadia HK, Siegel SJ. Poly Lactic-co-Glycolic Acid (PLGA) as a Biodegradable Controlled Drug Delivery Carrier. Polymers. 2011; 3(3): 1377-1397. doi:10.3390/polym3031377
26.    Kukuchi H, Yamauchi H, Hirota S. A Spray-Drying Method for Mass Production of Liposomes. Chem Pharm Bull. 1991; 39(6): 1522-1527. doi:10.1248/cpb.39.1522
27.    Buda V, Baul B, Andor M, et al. Solid State Stability and Kinetics of Degradation for Candesartan—Pure Compound and Pharmaceutical Formulation. Pharmaceutics. 2020; 12(2): 86. doi:10.3390/pharmaceutics12020086
28.    Koutsamanis I, Roblegg E, Spoerk M. Controlled delivery via hot-melt extrusion: A focus on non-biodegradable carriers for non-oral applications. Journal of Drug Delivery Science and Technology. 2023; 81: 104289. doi:10.1016/j.jddst.2023.104289
29.    Mahor AK, Singh PP, Gupta R, et al. Nanostructured Lipid Carriers for Improved Delivery of Therapeutics via the Oral Route. Jan N, ed. Journal of Nanotechnology. 2023; 2023: 1-35. doi:10.1155/2023/4687959
30.    Li J, Zheng H, Li X, et al. Phospholipid-modified poly(lactide-co-glycolide) microparticles for tuning the interaction with alveolar macrophages: In vitro and in vivo assessment. European Journal of Pharmaceutics and Biopharmaceutics. 2019; 143: 70-79. doi:10.1016/j.ejpb.2019.08.017
31.    Erathodiyil N, Ying JY. Functionalization of Inorganic Nanoparticles for Bioimaging Applications. Acc Chem Res. 2011; 44(10): 925-935. doi:10.1021/ar2000327
32.    Ellison CJ, Mundra MK, Torkelson JM. Impacts of Polystyrene Molecular Weight and Modification to the Repeat Unit Structure on the Glass Transition−Nanoconfinement Effect and the Cooperativity Length Scale. Macromolecules. 2005; 38(5): 1767-1778. doi:10.1021/ma047846y
33.    Kim H, Burgess DJ. Effect of drug stability on the analysis of release data from controlled release microspheres. Journal of Microencapsulation. 2002; 19(5): 631-640. doi:10.1080/02652040210140698
34.    Artasensi A, Pedretti A, Vistoli G, Fumagalli L. Type 2 Diabetes Mellitus: A Review of Multi-Target Drugs. Molecules. 2020; 25(8): 1987. doi:10.3390/molecules25081987
35.    Jaime-Vasconcelos MÁ, Frontana-Uribe BA, Morales-Serna JA, Salmón M, Cárdenas J. Structure of Salvioccidentalin, a Diterpenoid with a Rearranged neo-Clerodane Skeleton from Salvia occidentalis. Molecules. 2011; 16(11): 9109-9115. doi:10.3390/molecules16119109
36.    Guo L xin, Liu G en, Chen L, et al. Comparison of Clinical Efficacy and Safety of Metformin Sustained-Release Tablet (II) (Dulening) and Metformin Tablet (Glucophage) in Treatment of Type 2 Diabetes Mellitus. Front Endocrinol. 2021; 12: 712200. doi:10.3389/fendo.2021.712200
37.    Ni X, Zhang L, Feng X, Tang L. New Hypoglycemic Drugs: Combination Drugs and Targets Discovery. Front Pharmacol. 2022; 13: 877797. doi:10.3389/fphar.2022.877797
38.    Tan SY, Mei Wong JL, Sim YJ, et al. Type 1 and 2 diabetes mellitus: A review ofthe current treatment approach and gene therapy as a potential intervention. Diabetes and Metabolic Syndrome: Clinical Research and Reviews. 2019; 13(1): 364-372. doi:10.1016/j.dsx.2018.10.008
39.    Schlender L, Martinez YV, Adeniji C, et al. Efficacy and safety of metformin in the management of type 2 diabetes mellitus in older adults: a systematic review for the development of recommendations to reduce potentially inappropriate prescribing. BMC Geriatr. 2017; 17(S1): 227. doi:10.1186/s12877-017-0574-5
40.    Deeks ED, Scheen AJ. Canagliflozin: A Review in Type 2 Diabetes. Drugs. 2017; 77(14): 1577-1592. doi:10.1007/s40265-017-0801-6
41.    Anderson J, Gavin JR, Kruger DF, Miller E. Optimizing the Use of Glucagon-Like Peptide 1 Receptor Agonists in Type 2 Diabetes: Executive Summary. Clinical Diabetes. 2022; 40(3): 265-269. doi:10.2337/cd22-0020
42.    Combes N, Derval N, Hascoët S, et al. Ablation of supraventricular arrhythmias in adult congenital heart disease: A contemporary review. Archives of Cardiovascular Diseases. 2017; 110(5): 334-345. doi:10.1016/j.acvd.2017.01.007
43.    Signorelli C, Chilelli M, Giannarelli D, et al. Retrospective Correlation between First Drug Treatment Duration and Survival Outcomes in Sequential Treatment with Regorafenib and Trifluridine/Tipiracil in Refractory Metastatic Colorectal Cancer: A Real-World Subgroup Analysis. Cancers. 2023; 15(24): 5758. doi:10.3390/cancers15245758
44.    Sabbagh F, Muhamad II, Niazmand R, Dikshit PK, Kim BS. Recent progress in polymeric non-invasive insulin delivery. International Journal of Biological Macromolecules. 2022; 203: 222-243. doi:10.1016/j.ijbiomac.2022.01.134
45.    Hmingthansanga V, Singh N, Banerjee S, Manickam S, Velayutham R, Natesan S. Improved Topical Drug Delivery: Role of Permeation Enhancers and Advanced Approaches. Pharmaceutics. 2022; 14(12): 2818. doi:10.3390/pharmaceutics14122818
46.    Senthilnathan B, Vivekanandan K, Bhavya E, Masilamani, Priya BS. Impact of Nanoparticulate Drug Delivery System of Herbal Drug in Control of Diabetes Mellitus. Rese Jour of Pharm and Technol. 2019; 12(4): 1688. doi:10.5958/0974-360X.2019.00282.8
47.    Jin S, Leach JC, Ye K. Nanoparticle-Mediated Gene Delivery. In: Foote RS, Lee JW, eds. Micro and Nano Technologies in Bioanalysis. Vol 544. Methods in Molecular Biology. Humana Press; 2009: 547-557. doi:10.1007/978-1-59745-483-4_34
48.    Spangler RS. Insulin Administration via Liposomes. Diabetes Care. 1990; 13(9): 911-922. doi:10.2337/diacare.13.9.911
49.    Tong S, Li Q, Liu Q, Song B, Wu J. Recent advances of the nanocomposite hydrogel as a local drug delivery for diabetic ulcers. Front Bioeng Biotechnol. 2022; 10: 1039495. doi:10.3389/file.2022.1039495
50.    Wang B, Hu L, Siahaan T, eds. Drug Delivery: Principles and Applications. Second edition. John Wiley and Sons Inc; 2016.
51.    Pang H, Huang X, Xu ZP, Chen C, Han FY. Progress in oral insulin delivery by PLGA nanoparticles for the management of diabetes. Drug Discovery Today. 2023; 28(1): 103393. doi:10.1016/j.drudis.2022.103393
52.    Cesur S, Cam ME, Sayın FS, et al. Metformin-Loaded Polymer-Based Microbubbles/Nanoparticles Generated for the Treatment of Type 2 Diabetes Mellitus. Langmuir. 2022; 38(17): 5040-5051. doi:10.1021/acs.langmuir.1c00587
53.    American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2021. Diabetes Care. 2021; 44(Supplement_1): S15-S33. Doi:10.2337/dc21-S002
54.    Templer S. Closed-Loop Insulin Delivery Systems: Past, Present, and Future Directions. Front Endocrinol. 2022; 13: 919942. doi:10.3389/fendo.2022.919942
55.    Wu J, Liu Y, Yin H, Guo M. A new generation of sensors for non-invasive blood glucose monitoring. Am J Transl Res. 2023;15(6):3825-3837.
56.    Hina A, Saadeh W. Noninvasive Blood Glucose Monitoring Systems Using Near-Infrared Technology—A Review. Sensors. 2022; 22(13): 4855. doi:10.3390/s22134855
57.    Battelino T. The Future of Continuous Glucose Monitoring. Compendia. Published online August 2018: 24-24. doi:10.2337/db20181-24
58.    Chhabra P, Brayman KL. Stem Cell Therapy to Cure Type 1 Diabetes: From Hype to Hope. Stem Cells Translational Medicine. 2013; 2(5): 328-336. doi:10.5966/sctm.2012-0116





Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available