Author(s):
Manikya Pramudya, Hari Soepriandono, Farah Annisa Nurbani, Maya Safitri, Firli Rahmah Primula Dewi, Arghi Kinanthya Rif’atullah Al Hanif, Raden Joko Kuncoroningrat Susilo, Aunurohim, Bayyinatul Muchtaromah, Alfiah Hayati
Email(s):
alfiah-h@fst.unair.ac.id
DOI:
10.52711/0974-360X.2025.00225
Address:
Manikya Pramudya1, Hari Soepriandono1, Farah Annisa Nurbani1, Maya Safitri1, Firli Rahmah Primula Dewi1, Arghi Kinanthya Rif’atullah Al Hanif1, Raden Joko Kuncoroningrat Susilo2, Aunurohim3, Bayyinatul Muchtaromah4, Alfiah Hayati1*
1Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Indonesia.
2Department of Engineering, Faculty of Science and Tecnology, Universitas Airlangga, Indonesia.
3Department of Biology, Faculty Science and Data Analitics, Sepuluh Nopember Institute of Technology, Indonesia.
4Department of Biology, Faculty of Science and Technology, Maulana Malik Ibrahim Malang Islamic State University, Indonesia.
*Corresponding Author
Published In:
Volume - 18,
Issue - 4,
Year - 2025
ABSTRACT:
The growth of the plastic industry alongside inadequate management of plastic waste has resulted in plastic pollution. Nanoplastic particles can be toxic and induce oxidative stress. This research explored the ability of Cinnamomum burmanii leaf extract to mitigate hematological alterations induced by exposure to low-dose nanoplastics polystyrene (NPs) in male albino rats. Normal control and negative control groups were administrated with aquadest and NPs solution (10µL/kg) for 14 days respectively, followed by aquadest for the next 21 days. Groups 3, 4, and 5 received a combined treatment of NPs for 14 days and extract for 21 days (100, 200, and 400mg/kg). Each group consists of five rats. Animal treatments were administered through oral gavage. Then, the hematological parameters were analyzed. The results revealed that exposure to NPs caused a significant elevation in lymphocyte counts and a decrease in monocytes, red blood cells (RBC), hemoglobin (Hb), and hematocrit (Ct). Nevertheless, there was no significant impact observed on white blood cells (WBC), granulocytes, or platelet counts. Within the groups treated with Cinnamomum burmanii leaf extract, a reduction in lymphocyte and WBC counts was observed, alongside an increase in monocyte counts. However, there was no significant increase noted in red RBC, Hb, Ct, or platelet counts. Cinnamomum burmanii leaf extract may hold promise in improving the hemodynamic profile in bodies exposed to NPs.
Cite this article:
Manikya Pramudya, Hari Soepriandono, Farah Annisa Nurbani, Maya Safitri, Firli Rahmah Primula Dewi, Arghi Kinanthya Rif’atullah Al Hanif, Raden Joko Kuncoroningrat Susilo, Aunurohim, Bayyinatul Muchtaromah, Alfiah Hayati. Cinnamomum burmanii Leaf Extract Potential on Hematological Assessment of Rats Exposed to Polystyrene Nanoplastics. Research Journal of Pharmacy and Technology. 2025;18(4):1573-8. doi: 10.52711/0974-360X.2025.00225
Cite(Electronic):
Manikya Pramudya, Hari Soepriandono, Farah Annisa Nurbani, Maya Safitri, Firli Rahmah Primula Dewi, Arghi Kinanthya Rif’atullah Al Hanif, Raden Joko Kuncoroningrat Susilo, Aunurohim, Bayyinatul Muchtaromah, Alfiah Hayati. Cinnamomum burmanii Leaf Extract Potential on Hematological Assessment of Rats Exposed to Polystyrene Nanoplastics. Research Journal of Pharmacy and Technology. 2025;18(4):1573-8. doi: 10.52711/0974-360X.2025.00225 Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-4-16
REFERENCES:
1. Lin L. Zuo L. Peng J. Cai L. Fok L. Yan Y. Li H. Xu X. Occurrence and Distribution of Microplastics in An Urban River: A Case Study in the Pearl River along Guangzhou City, China. Science of The Total Environment. 2018; 644: 375-381. doi.org/10.1016/j.scitotenv.2018.06.327
2. Hu L. Zhou Y. Wang Y. Pan DZX. Transfer of Micro(nano)plastics in Animals: A Mini-review and Future Research Recommendation. Journal of Hazardous Materials Advances. 2022; 7. doi.org/10.1016/j.hazadv.2022.100101
3. Gigault J. Halle A. Baudrimont M. Pascal PY. Gauffre F. Phi TL. El Hadri H. Grassl B. Reynaud S. Current opinion: What is a nanoplastic? Environmental Pollution. 2018; 235: 1030–1034. doi.org/10.1016/j.envpol.2018.01.024.
4. Da Costa JP. Micro- and Nanoplastics in the Environment: Research and Policymaking. Volume 1. Elsevier; Amsterdam, The Netherlands: 2018; 12–16. doi.org/10.1016/j.coesh.2017.11.002
5. Santillo D. Miller K. Johnston P. Microplastics as contaminants in commercially important seafood species. Integrated Environmental Assessment and Management. 2017; 13: 516–521. doi.org/10.1002/ieam.1909.
6. Hernandez LM. Yousefi N. Tufenkji N. Are There Nanoplastics in Your Personal Care Products? Environmental and Science Technology Letters. 2017; 4: 280–285. doi.org/ 10.1021/acs.estlett.7b00187.
7. Halle AT. Jeanneau L. Martignac M. Jardé E. Pedrono B. Brach L. Gigault J. Nanoplastic in the North Atlantic Subtropical Gyre. Environmental Science and Technology. 2017; 51: 13689–13697. doi.org/10.1021/acs.est.7b03667
8. Contam EPOCITFC. Presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA Journal. 2016; 14: 14. doi.org/10.2903/j.efsa.2016.4501
9. Gerdes Z. Ogonowski M. Nybom I. Ek C. Adolfsson-Erici M. Barth A. Gorokhova E. Microplastic-mediated Transport of PCBs? A Depuration Study with Daphnia magna. PloS ONE. 2019; 14(2): e0205378. doi.org/10.1371/journal.pone.0205378
10. Smith M. Love DC. Rochman CM. Neff RA. Microplastics in Seafood and the Implications for Human Health. Current Environmental Health Reports. 2018; 5(3): 375–386. doi.org/10.1007/s40572-018-0206-z
11. Pivokonsky M. Cermakova L. Novotna K. Peer P. Cajthaml T. Janda V. Occurrence of Microplastics in Raw and Treated Drinking Water. Science of The Total Environment. 2018; 643: 1644–1651. doi.org/10.1016/j.scitotenv.2018.08.102
12. Oh N. Park JH. Endocytosis and Exocytosis of Nanoparticles in Mammalian Cells. International Journal Nanomedicine. 2014; 9: 51–63. doi.org/10.2147/IJN.S26592
13. Espinosa C. García Beltrán JM. Esteban MA. Cuesta A. In vitro effects of virgin microplastics on fish head-kidney leucocyte activities. Environmental Pollution. 2018; 235, 30–38. doi.org/10.1016/j.envpol.2017.12.054
14. Hu M. Palić D. Micro- and nano-plastics activation of oxidative and inflammatory adverse outcome pathways. Redox Biology. 2020; 37: 101620. doi.org/10.1016/j.redox.2020.101620
15. Hwang J. Choi D. Han S. Choi J. Hong J. An Assessment of the Toxicity of Polypropylene Microplastics in Human Derived Cells. Science Total Environment. 2019; 684: 657–669. doi.org/10.1016/j.scitotenv.2019.05.071
16. Greven AC. Merk T. Karagöz F. Mohr K. Klapper M. Jovanović B. Palić D. Polycarbonate and Polystyrene Nanoplastic Particles Act as Stressors to the Innate Immune System of Fathead Minnow (Pimephales promelas). Environmental Toxicology Chemistry. 2016; 35: 3093–3100. doi.org/10.1002/etc.3501
17. Aravind R. Aneesh TP. Bindu AR. Bindu K. Estimation of Phenolics and Evaluation of Antioxidant activity of Cinnamomum malabatrum (Burm.F).Blume. Asian Journal of Research Chemistry. 2012; 5(5): 628-632.
18. Arikan B. Ozfidan-Konakci C. Yildiztugay E. Turan M. Cavusoglu H. Polystyrene nanoplastic contamination mixed with polycyclic aromatic hydrocarbons: Alleviation on gas exchange, water management, chlorophyll fluorescence and antioxidant capacity in wheat. Environmental Pollution. 2022; 311: 119851. doi.org/10.1016/j.envpol.2022.119851.
19. Rangasamy P. Hansiya VS. Maheswari PU. Suman T. Geetha N. Phytochemical Analysis and Evaluation of In vitro Antioxidant and Anti-urolithiatic Potential of various fractions of Clitoria ternatea L. Blue Flowered Leaves. Asian Journal of Pharmaceutical Analysis. 2019; 09(02): 67-76. doi.org/ 0.5958/2231-5675.2019.00014.0
20. Muthukumaran P. Shanmuganathan P. Malathi C. In Vitro Antioxidant Evaluation of Mimosa pudica. Asian Journal of Pharmaceutical Research. 2011; 1(2):44-46
21. Valli G. Jeyalaksmi M. Preliminary Phytochemical and Antioxidant Study of Odina woodier Leaf Extract. Asian Journal of Pharmaceutical Research. 2012; 2(4): 153-155
22. Samal PK. Antioxidant activity of Strobilanthes asperrimus in albino rats Asian Journal of Pharmaceutical Research. 2013; 3(2): 71-74
23. Narasimhan R. Sathiyamoorthy M. 2016. Phytochemical Screening and Antioxidant Studies in the Pulp Extracts of Cucurbita maxima. Asian Journal of Pharmaceutical Research. 2016; 6(1): 1-4. doi.org/10.5958/2231-5691.2016.00001.0
24. Abriyani E. Fikayuniar L. 2020. Screening Phytochemical, Antioxidant Activity and Vitamin C Assay from Bungo perak-perak (Begonia versicolar Irmsch) leaves. Asian Journal of Pharmaceutical Research. 2020; 10(3): 183-187. doi.org/10.5958/2231-5691.2020.00032.5
25. Ervina M. Nawu YE. Esar SY. Comparison of in vitro Antioxidant Activity of Infusion, Extract and Fractions of Indonesian Cinnamon (Cinnamomum burmannii) Bark. International Food Research Journal. 2016; 23(3): 1346-1350.
26. Tisnadjaja D. Irawan H. Ekawati N. Bustanussalam, Simanjuntak, P. Potency of Cinnamomum burmannii as Antioxidant and α-Glucosidase Inhibitor and Their Relation to Trans-Cinamaldehyde and Coumarin Contents. Jurnal Fitofarmaka Indonesia. 2020; 7(3): 20-25.
27. Valko M. Leibfritz D. Moncol J. Cronin MTD. Mazur MJ. Free Radicals and Antioxidants in Normal Physiological Functions and Human Disease. The International Journal of Biochemistry and Cell Biology. 2007; 39: 44-84. doi.org/10.1016/j.biocel.2006.07.001
28. Ugwah-Oguejiofor CJ. Okoli CO, Ugwah, MO. Umaru ML. Ogbulie CS. Mshelia HE. Umar M. Njanf AA. Acute and sub-acute toxicity of aqueous extract of aerial parts of Caralluma dalzielii N. E. Brown in mice and rats. Heliyon. 2019; 5(1): e01179. doi.org/10.1016/j.heliyon.2019.e01179
29. Triwahyudi H. Soehargo L. Muniroh L. Qolbi RN. 'Aini TQ. Kurnia RFZ. Putra PAD. Pramudya P. Muchtaromah B. Hayati A. Potential of Red Seaweed (Dichotomania obtusata) on Immune Response and Histopathology of Rat Testis Exposed to Nanoplastics. Tropical Journal of Natural Product Research. 2023; 7(5): 2969-2973. doi.org/10.26538/tjnpr/v7i5.20
30. Liu W. Zhang B. Yao Q. Feng X. Shen T. Guo P. Wang P. Bai Y. Li B. Wang P. Li R. Qu Z. Liu N. Toxicological effects of micro/nano-plastics on mouse/rat models: a systematic review and meta-analysis. Frontier in Public Health. 2023; 11: 1103289. doi.org/10.3389/fpubh.2023.1103289.
31. Lai H. Liu X. Qu. M. Nanoplastics and Human Health: Hazard Identification and Biointerface. Nanomaterials (Basel). 2022; 12(8): 1298. doi.org/10.3390/nano12081298
32. Schwabl P. Köppel S. Königshofer P. Bucsics T. Trauner M. Reiberger T. Liebmann B. Detection of various microplastics in human stool: A prospective case series. Annal of Internal Medicine. 2019; 171: 453–457. doi.org/10.7326/M19-0618
33. Wang Q. Zennadi R. The Role of RBC Oxidative Stress in Sickle Cell Disease: From the Molecular Basis to Pathologic Implications. Antioxidants. 2021; 10(10): 1608. doi.org/10.3390/antiox10101608
34. Ballesteros SJ. Domenech I. Barguilla C. Cortés R. Marcos AJES. Hernández N. Genotoxic and immunomodulatory effects in human white blood cells after ex vivo exposure to polystyrene nanoplastics. Environmental Science: Nano. 2020; 7: 3431–3446. doi.org/10.1039/D0EN00748J
35. Çobanoğlu H. Belivermiş M. Sıkdokur E. Kılıç Ö. Çayır AJC. Genotoxic and cytotoxic effects of polyethylene microplastics on human peripheral blood lymphocytes. Chemosphere. 2021; 272: 129805. doi.org/10.1016/j.chemosphere.2021.129805.
36. Fleury J. and Baulin VA Microplastics destabilize lipid membranes by mechanical stretching. Proceedings of the National Academy of Sciences. 2021; 118(31): e2104610118. doi.org/10.1073/pnas.2104610118
37. Sarma DK. Dubey R. Samarth RM. Shubham S. Chowdhury P. Kumawat M. Verma V. Tiwari RR. Kumar M. The Biological Effects of Polystyrene Nanoplastics on Human Peripheral Blood Lymphocytes. Nanomaterials (Basel). 2022; 12(10): 1632. doi.org/10.3390/nano12101632
38. Campoio TR. Oliveira FA. Otton A. Oxidative stress in human lymphocytes treated with fatty acid mixture: Role of carotenoid astaxanthin. Toxicology in Vitro. 2011; 25(7): 1448-1456. doi.org/10.1016/j.tiv.2011.04.018
39. Nurhasmiati. Purwanti S. The functions of Cinnamomum burmannii as an antioxidant feed additive for broiler chickens: A review. IOP Conference Series: Earth Environment. Sci. 2021; 788: 012082. doi.org/10.1088/1755-1315/788/1/012082
40. Saloni S. Chhajed, Mayuri V. Mali, Azam Z. Shaikh, S. P. Pawar, Ritik. S. Jain. Cancer: Immunology and Immunotharapy. Research Journal of Pharmacology and Pharmacodynamics. 2022; 14(3): 159-4
41. Sirait TS. Arianto A. Dalimunthe A. Phytochemical Screening of Cinnamon Bark (Cinnamomum burmanii) (C. Ness and T. Ness) C. Ness ex Blume Ethanol Extract and Antioxidant Activity Test with DPPH (2,2-diphenyl-1-picrylhydrazyl) Method. International Journal of Science, Technology and Management. 2023; 4(3). doi.org/10.46729/ijstm.v4i1.739
42. Gauttam V. Munjal K. Arora A. Mujwar S. Rani I. Gupta S. Mir SR. A Review on Pharmacological Activities and Recent Patents on Cinnamomum species. Research Journal of Pharmacy and Technology. 2023; 16(7): 3489-3. doi.org/ 10.52711/0974-360X.2023.00576