Author(s): Smita Daware, Sakshi Baiwar, Amol Warokar, Kedar Somani, Sayali Waghmare, Shashank Agrawal

Email(s): dawaresg@rknec.edu

DOI: 10.52711/0974-360X.2025.00206   

Address: Smita Daware1, Sakshi Baiwar1, Amol Warokar2*, Kedar Somani1, Sayali Waghmare1, Shashank Agrawal1
1Department of Electronics Engineering, Shri Ramdeobaba College of Engineering and Management, Nagpur.
2Dadasaheb Balpande College of Pharmacy, Besa, Nagpur – 440037.
*Corresponding Author

Published In:   Volume - 18,      Issue - 3,     Year - 2025


ABSTRACT:
Drug compatibility is a crucial component of pharmaceutical development since it ensures the security and effectiveness of products made of many medications. Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), X-ray Diffraction (XRD), and Fourier Transform Infrared Spectroscopy (FTIR) are effective analytical methods used to examine medication compatibility. The ideas, approaches, and applications of FTIR, DSC, XRD, and TGA in characterizing drug compatibility are thoroughly examined in this review study and how they can be used together to examine drug interactions, crystalline changes, thermal behaviour, and degradation kinetics. Case studies that demonstrate how these methods have been successfully used in diverse pharmaceutical formulations are provided. This assists researchers and pharmaceutical scientists in creating secure and efficient drug combinations by providing a thorough perspective. The effectiveness and safety of pharmaceutical products are significantly influenced by the compatibility of medicinal components in therapeutic formulations. Different analytical methods, such as FTIR, DSC, XRD, and TGA are used to evaluate the compatibility of medication components. This review paper offers a thorough investigation of various methods and how they might be used to describe medication compatibility.


Cite this article:
Smita Daware, Sakshi Baiwar, Amol Warokar, Kedar Somani, Sayali Waghmare, Shashank Agrawal. An Overview on Structural and Functional Characterization of Drug-Excipient Compatibility Studies by FTIR, DSC, XRD and TGA. Research Journal of Pharmacy and Technology. 2025;18(3):1434-8. doi: 10.52711/0974-360X.2025.00206

Cite(Electronic):
Smita Daware, Sakshi Baiwar, Amol Warokar, Kedar Somani, Sayali Waghmare, Shashank Agrawal. An Overview on Structural and Functional Characterization of Drug-Excipient Compatibility Studies by FTIR, DSC, XRD and TGA. Research Journal of Pharmacy and Technology. 2025;18(3):1434-8. doi: 10.52711/0974-360X.2025.00206   Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-3-67


REFERENCES:
1.    Raquel Ferna´ndez-Penas, Cristo´bal Verdugo-Escamilla, Carla Triunfo, Stefanie Ga¨rtner, Annarita D’Urso, e Francesca Oltolina, Antonia Follenzi, Gabriele Maoloni, Helmut Co¨lfen, Giuseppe Falini and Jaime Go´mez-Morales. A sustainable one-pot method to transform seashell waste calcium carbonate to osteoinductive hydroxyapatite micro-nanoparticles. Royal Society of Chemistry.  2023; 11: 7766 – 7777.
2.    Ayessa P. Maciel, Guilherme Gomide, Franciscarlos G. da Silva, Ana Alice A. M. Guerra, Jerome Depeyrot, Alessio Mezzi and Alex F. C. Campos. L-Lysine-Coated Magnetic Core–Shell Nanoparticles for the Removal of Acetylsalicylic Acid from Aqueous Solutions. MDPI.  2023; 13: 514.
3.    N. Murugan, Partheban Manoharan, Golok B. Nando. Thermodynamic Compatibility, Crystallizable, Thermal, Mechanical Properties and Oil Resistance Characteristics of Nanostructure Poly (ethylene-co methyl acrylate). Open Chem. 2017; 15: 426-437.
4.    Farzad Khajavi, Principal Component Analysis in Drug-excipient Interactions.
5.    Asep Bayu Dani Nandiyanto, Rosi Oktiani, Risti Ragadhita. How to Read and Interpret FTIR Spectroscopy of Organic Material. Journal of Science & Technology. 2019; 4(1).
6.    Pavani Vengala, Swetha Dintakurthi, Chavali Venkata Satya Subrahmanyam. Lactose coated ceramic nanoparticles for oral drug delivery. 2013; 7: 540-545.
7.    Kh. Nurul Islam,  Z. Zuki, M. E. Ali, Mohd Zobir Bin Hussein, M. M. Noordin, M. Y. Loqman,. Wahid, M. A. Hakim,7and Sharifa Bee Abd Hamid. Facile Synthesis of Calcium Carbonate Nanoparticles from Cockle Shell. 2012doi:10.1155/2012/534010.
8.    Kabali Vijai Anand, Munuswamy Reshma, Malaichamy Kannan, Sekaran Muthamil Selvan, Sumit Chaturvedi, Ahmed Esmail Shalan, Kasivelu Govindaraju. Preparation and characterization of calcium oxide nanoparticles from marine molluscan shell waste as nutrient source for plant growth. 2020 Doi: 10.1007/s40097-020-00376-4
9.    Muralidhar Pysyk. Vijaya Bhaskar, Chetan Hasmukh Mehta, Usha Yogendra Nayak, Kunnatur Balasundara Koteshwara, Srinivas Mutalik. Drug‐Carrier Miscibility in Solid Dispersions of Glibenclamide and a Novel Approach to Enhance Its Solubility Using an Efervescent Age. 2022 Doi: 10.1208/s12249-022-02437-z.
10.    Mohd Aftab Alam, Fahad I. Al-Jenoobi, Abdullah M. Al-Mohizea and Raisuddin Ali. Effervescence Assisted Fusion Technique to Enhance the Solubility of Drugs. 2015;16 Doi: 10.1208/s12249-015-0381-2.
11.    Adriana I. Segall, Preformulation: The use of FTIR in compatibility studies. Journal of Innovations in Applied Pharmaceutical Science. 2019; 4(3).
12.    Shaikh Mohammed Vasim. Effervescent Mixture Based Solid Dispersion a Novel Approach for Solubility Enhancement. 2015; 4(11).
13.    Shilpi Sinha, Mushir Ali, Sanjula Baboota, Alka Ahuja, Anil Kumar and Javed Ali. Solid Dispersion as an Approach for Bioavailability Enhancement of Poorly Water-Soluble Drug Ritonavir, AAPS Pharm SciTech. 2010; 11(2). DOI: 10.1208/s12249-010-9404-1.
14.    Barbara Rojek, Marek Wesolowski, A combined differential scanning calorimetry and thermogravimetric approach for the effective assessment of drug substance‐excipient compatibility, Journal of Thermal Analysis and Calorimetry. 2022.
15.    Siyu Hea, Li Wua, Xue Lic, Hongyu Suna, Ting Xionga, Jie Liue, Chengxi Huanga, Huipeng Xua, Huimin Sunf, Weidong Chene, Ruxandra Grefc, Jiwen Zhang. Metal-organic frameworks for advanced drug delivery. 2021; 13(8): 2362-2395.
16.    Sumaia Abdulbari Ahmed Ali Hard, H.N. Shivakumar, Moqbel Ali Moqbel Redhwan. Development and optimization of in-situ gel containing chitosan nanoparticles for possible nose-to-brain delivery of vinpocetine. International Journal of Biological Macromolecules. 2023; 23.
17.    Shaymaa Elsayed Khater, Ahmed El-khouly, Hend Mohamed Abdel-Bar a, Abdulaziz Mohsen Al-mahallawi, Dalia Mahmoud Ghorab. Fluoxetine hydrochloride loaded lipid polymer hybrid nanoparticles showed possible efficiency against SARS-CoV-2 infection, International Journal of Pharmaceutics. 2021; 607.
18.    Dr. Srinivas Ampati, Akhila Hanumakonda, Vydehi Maheshwaram. Formulation and Evaluation of Nasal Insitu Gel of Fluoxetine Hydrochloride. 2016; 3(6): 573-581.
19.    Hale Seçilmiş Canbay, Mahmut Dogantürk. Compatibility Studies of Sildenafil with Different Excipients by Using TGA, DSC, XRD and FTIR, Celal Bayar University Journal of Science. 2019; 15(4): 401-407.
20.    Malay K Das, Bhupen Kalita. Design and Evaluation of Phyto-Phospholipid Complexes (Phytosomes) of Rutin for Transdermal Application. 2014; 4(10): 51-57, DOI: 10.7324/JAPS.2014.401010.
21.    Kishor Arora, Anu Parmar. Simulation of IR Spectra of Some Organic Compounds-A Review. IOSR Journal of Applied Chemistry (IOSR-JAC). 2013; 6(1): 10-24.
22.    Ranga K. Dissanayake, K. D. C. Perera, W. P. T. D. Perera, W. P. S. L. Wijesinghe, and Janitha M. Unagolla.  Enteric Coated Oral Low molecular weight chitosan Delivery of Hydroxyapatite Nanoparticle for Modified Release Vitamin D3 Formulation. Journal of Nanomaterials. 2021
23.    Amit K. Goyal, Kapil Khatri, Neeraj Mishra, Abhinav Mehta, Bhuvaneshwar Vaidya, Shailja Tiwari, and Suresh Prasad Vyas.  Aquasomes—A Nanoparticulate Approach for the Delivery of Antigen. Drug Development and Industrial Pharmacy. 2018; 34: 1297–1305, DOI: 10.1080/03639040802071661.
24.    Deepthi Priyanka Damera, Sravani Kaja, Leela Sai Lokesh Janardhanam, SK Alim, Venkata Vamsi Krishna Venuganti, and Amit Nag. Synthesis, Detailed Characterization, and Dual Drug Delivery Application of BSA Loaded Aquasomes, American Chemical Society. 2019; 2: 4471–4484, DOI: 10.1021/acsabm.9b00635.
25.    Aroon. Jayanthi. Enhancement of Solubility of Duloxetine HCL by Solid Dispersion Technique. 2023; 8(3) Doi: 10.35629/7781-080320232032.
26.    Harrison D. Lawson, S. Patrick Walton, and Christina Chan. Metal−Organic Frameworks for Drug Delivery: A Design Perspective. American Chemical Society. 2021; 13: 7004-7020.
27.    Dyandevi Mathure, Jyotsana R Madan, Kishore N. Gujar, Ashok Tupsamundre, Hemant A. Ranpise and Kamal Dua. Formulation and Evaluation of Niosomal in situ Nasal Gel of a Serotonin Receptor Agonist, Buspirone Hydrochloride for the Brain Delivery via Intranasal Route. Pharmaceutical Nanotechnology. 2018; 6: 69-78.
28.    Imrana Jazuli, Annu, Bushra Nabi, Thasleem moolakkadath, Tausif Alam, Sanjula Baboota, Javed Ali. Optimization of Nanostructured Lipid Carriers of Lurasidone Hydrochloride Using Box-Behnken Design for Brain Targeting: In Vitro and In Vivo Studies. Journal of Pharmaceutical Sciences. 2019; 108: 3082-3090.
29.    Patil Satish K, Wagh Kalpesh S, Mali Kamlesh, Baviskar Dheeraj T, Jain Dinesh K. Development and evaluation of solid lipid nanoparticles containing anti-migraine drug. World Journal of Pharmaceutical Sciences. 2014; 2(9): 1014-1021.
30.    Preeti R. Wavikar and Pradeep R. Vavia. Rivastigmine-loaded in situ gelling nanostructured lipid carriers for nose to brain delivery. 2014. DOI: 10.3109/08982104.2014.954129.


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available