Author(s): Suprapto Suprapto, Yatim Lailun Ni’mah, Zulkarnain

Email(s): suprapto@chem.its.ac.id

DOI: 10.52711/0974-360X.2025.00195   

Address: Suprapto Suprapto1*, Yatim Lailun Ni’mah1, Zulkarnain2
1Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia, 60111.
2Department of Science Education, Universitas Islam Negeri Fatmawati Sukarno, Bengkulu, Indonesia.
*Corresponding Author

Published In:   Volume - 18,      Issue - 3,     Year - 2025


ABSTRACT:
Cytochromes P450 (CYP450) inhibitors are compounds that inhibit CYP450 enzyme activity. CYP450 inhibitors can be used to manipulate the metabolism of certain drugs to achieve desired therapeutic. Flavonoids, including alpha-flavones, are known to have a wide range of biological activities and are of interest as potential therapeutics for various diseases. Several chemicals have been synthesized from the alpha-flavone scaffold that has been found to have inhibitory effects on the CYP450-1A1 enzyme system. Therefore, synthesizing chemicals from the alpha flavone scaffold and studying their inhibitory effects on the CYP450-1A1 enzyme system can lead to the discovery of drug candidates that selectively inhibit certain CYP450-1A1 enzymes. Quantitative Structure-Activity Relationship (QSAR) and molecular docking can be used to predict the IC50 of CYP450-1A1 inhibitors. The pIC50 mean value of 323 compounds known as CYP450 inhibitors were used as training datasets. The 30 alpha-naphthoflavone analogs built from the alpha-naphthoflavone scaffold were studied for their inhibition activity using linear and nonlinear regression. Among 30 compounds, 19 compounds potentially have CYP450-1A1 inhibition activity. Among 19 predicted active compounds, three compounds have IC50 below 50 nM. The QSAR regression models predict IC50 of 10-bromo-1-phenyl-phenanthrene (compound 0), 1-phenylthioxanthen-9-one (compound 6), and 2-bromo-1-phenyl-phenanthrene (compound 29) which were 36.9173, 44.8891, 36.9173 nM. The binding energies between these three compounds with chains A, B, C, and D of CYP450-1A1 were below -10 kc/mol. Thus, the interactions between these three compounds with CYP450-1A1 were significant. Consideration from QSAR and molecular docking results might be relevant in the optimization of alpha-naphthoflavone analogs' potential as CYP450-1A1 inhibitors.


Cite this article:
Suprapto Suprapto, Yatim Lailun Ni’mah, Zulkarnain. Virtual screening and molecular docking study of alpha-naphthoflavone analogs as cytochromes P450-1A1 inhibitors. Research Journal of Pharmacy and Technology. 2025;18(3):1346-6. doi: 10.52711/0974-360X.2025.00195

Cite(Electronic):
Suprapto Suprapto, Yatim Lailun Ni’mah, Zulkarnain. Virtual screening and molecular docking study of alpha-naphthoflavone analogs as cytochromes P450-1A1 inhibitors. Research Journal of Pharmacy and Technology. 2025;18(3):1346-6. doi: 10.52711/0974-360X.2025.00195   Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-3-56


REFERENCES:
1.    Shah YR. Sen DJ. Patel CN. Biochemical Role of Cytochrome P450 Enzymes In-Vivo. Asian Journal of Research in Chemistry. 2010; 3: 243–248.
2.    Shimada T. Tanaka K. Takenaka S. Murayama N. Martin MV. Foroozesh MK. Yamazaki H. Guengerich FP. Komori M. Structure−Function Relationships of Inhibition of Human Cytochromes P450 1A1, 1A2, 1B1 2C9, and 3A4 by 33 Flavonoid Derivatives. Chem. Res. Toxicol. 2010; 23: 1921–1935. https://doi.org/10.1021/tx100286d.
3.    Gilson MK. Liu T. Baitaluk M. Nicola G. Hwang L. Chong J. BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Research. 2016; 44: D1045–D1053. https://doi.org/10.1093/nar/gkv1072
4.    Santes-Palacios R. Marroquín-Pérez AL. Hernández-Ojeda SL. Camacho-Carranza R. Govezensky T. Espinosa-Aguirre JJ. Human CYP1A1 inhibition by flavonoids. Toxicology in Vitro. 2020; 62: 104681. https://doi.org/10.1016/j.tiv.2019.104681.
5.    Chaudhary A. and Willett KL. Inhibition of human cytochrome CYP1 enzymes by flavonoids of St. John’s wort. Toxicology. 2006; 217: 194–205. https://doi.org/10.1016/j.tox.2005.09.010
6.    Kumar, YP. Sreenivasulu M. Yasmeen R. Smruthiraj VR. Swathi, VA. A Review on 1,3,4-Thiadiazoles. Asian J. Research Chem. 2013; 6(3): 272-277.
7.    Singh S. Gupta P. Meena A. Luqman S. Acacetin, a flavone with diverse therapeutic potential in cancer, inflammation, infections, and other metabolic disorders. Food and Chemical Toxicology. 2020; 145: 111708. https://doi.org/10.1016/j.fct.2020.111708.
8.    Tsuji PA. Walle T. Benzo[a]pyrene-induced cytochrome P450 1A and DNA binding in cultured trout hepatocytes—Inhibition by plant polyphenols. Chemico-Biological Interactions. 2007; 169: 25–31. https://doi.org/10.1016/j.cbi.2007.05.001.
9.    Šulc M. Indra R. Moserová M. Schmeiser HH. Frei E. Arlt VM. Stiborová M. The impact of individual cytochrome P450 enzymes on oxidative metabolism of benzo[a]pyrene in human livers. Environmental and Molecular Mutagenesis. 2016; 57: 229–235. https://doi.org/10.1002/em.22001.
10.    Ganatra SH., Patle MR, Bhagat GK. Studies of Quantitative Structure-Activity Relationship (QSAR) of Hydantoin Based Active Anti-Cancer Drugs. Asian J. Research Chem. 2011; 4(10): 1643-1648.
11.    Dibia KT. Igbokwe PK. Ezemagu GI. Asadu CO. Exploration of the quantitative Structure-Activity relationships for predicting Cyclooxygenase-2 inhibition bioactivity by Machine learning approaches. Results in Chemistry. 2022; 4: 100272. https://doi.org/10.1016/j.rechem.2021.100272.
12.    Nandhini S. Radha R. Vadivu R. Docking of Hematoporphyrin on Various Anticancer Drugs Targeting Enzymes. Asian J. Pharm. Res. 2016; 6(3): 123-130. doi: 10.5958/2231-5691.2016.00019.8
13.    Alam S. Khan F. Virtual screening, Docking, ADMET and System Pharmacology studies on Garcinia caged Xanthone derivatives for Anticancer activity. Sci Rep. 2018; 8: 5524. https://doi.org/10.1038/s41598-018-23768-7.
14.    Chirattikan M. Jiraporn U. Molecular Docking Study of Chromone Derivatives as Dual Inhibitor Against Plasmepsin II and Falcipain-2. Chiang Mai Journal of Science. 2020; 47(1): 98-113. https://epg.science.cmu.ac.th/ejournal/journal-detail.php?id=10506.
15.    Ruiz-Moreno AJ. Reyes-Romero A. Dömling A. Velasco-Velázquez MA. In Silico Design and Selection of New Tetrahydroisoquinoline-Based CD44 Antagonist Candidates. Molecules. 2021; 26: 1877. https://doi.org/10.3390/molecules26071877.
16.    Chelamalla R. Makula A. Molecular docking studies and ADMET Predictions of Pyrimidine Coumarin Scaffolds as Potential IDO Inhibitors. Asian J. Research Chem. 2017; 10(3): 331-340. doi: 10.5958/0974-4150.2017.00056.617.    
17.    Kamath V. Pai A. Application of Molecular Descriptors in Modern Computational Drug Design –An Overview. Research J. Pharm. and Tech. 2017; 10(9): 3237-3241. https://doi.org/10.5958/0974-360X.2017.00574.1
18.    Landrum G. RDKit: Open-Source Cheminformatics Software. 2016. http://www.rdkit.org/ (accessed 3.15.22)
19.    Mehta S. Review of Heterocyclic Scaffolds for the Inhibitors of ATP synthase. Asian J. Research Chem. 2018; 11(2):505-508. doi: 10.5958/0974-4150.2018.00090.1
20.    Walsh AA. Szklarz GD. Scott EE. Human Cytochrome P450 1A1 Structure and Utility in Understanding Drug and Xenobiotic Metabolism. Journal of Biological Chemistry. 2013; 288: 12932–12943. https://doi.org/10.1074/jbc.M113.452953.
21.    Hosen SMZ. Saha D. Dash R. Emran TB. Alam A. Junaid Md. Drug Bank: An Update-Resource for in Silico Drug Discovery. Research J. Pharma. Dosage Forms and Tech. 2012; 4(3): 166-171
22.    Berman HM. Battistuz T. Bhat TN. Bluhm WF. Bourne PE. Burkhardt K. Feng Z. Gilliland GL. Iype L. Jain S. Fagan P. Marvin J. Padilla D. Ravichandran V. Schneider B. Thanki N. Weissig H. Westbrook JD. Zardecki C. The Protein Data Bank. Acta Crystallogr D Biol Crystallogr. 2002; 58 (6): 899-907. https://doi.org/10.1107/s0907444902003451.
23.    Satpute UM. Rohane SH. Efficiency of AUTODOCK: Insilico study of Pharmaceutical Drug Molecules. Asian J. Research Chem. 2021; 14(1): 92-96. https://doi.org/10.5958/0974-4150.2021.00016.X
24.    Eberhardt J. Santos-Martins D. Tillack AF. Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021; 61: 3891–3898. https://doi.org/10.1021/acs.jcim.1c00203
25.    Pawar RP., Rohane SH. Role of Autodock vina in PyRx Molecular Docking. Asian J. Research Chem. 2021; 14(2):132-134. https://doi.org/10.5958/0974-4150.2021.00024.9
26.    Riniker S. Landrum GA. Similarity maps - a visualization strategy for molecular fingerprints and machine-learning methods. Journal of Cheminformatics. 2013; 5: 43. https://doi.org/10.1186/1758-2946-5-43.
27.    Daina A. Michielin O. Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017; 7: 42717. https://doi.org/10.1038/srep42717.
28.    Yang H. Lou C. Sun L. Li J. Cai Y. Wang Z. Li W. Liu G. Tang Y. admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics. 2019; 35: 1067–1069. https://doi.org/10.1093/bioinformatics/bty707.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available