Author(s): Dini Hadiarti, Hamdil Mukhlishin, Masriani

Email(s): dinihadiarti@unmuhpnk.ac.id

DOI: 10.52711/0974-360X.2025.00144   

Address: Dini Hadiarti1*, Hamdil Mukhlishin1, Masriani2
1Department of Chemical Education, Faculty of Teacher Training and Education, Universitas Muhammadiyah Pontianak, West Borneo, Indonesia.
2Department of Chemical Education, Faculty of Teacher Training and Education, Universitas Tanjungpura, West Borneo, Indonesia.
*Corresponding Author

Published In:   Volume - 18,      Issue - 3,     Year - 2025


ABSTRACT:
The side effects and drug resistance in breast cancer necessitate the search for new candidates from plant extracts, one of which is Premna serratifolia leaf. The leaf extract of P. serratifolia was tested for anti-breast cancer activity on MCF-7 cells and docked with the placental aromatase cytochrome P450 protein (PDB Code: 3S79). The most significant reduction of 50% in breast cancer cells was observed with the ethyl acetate extract at a concentration of 4.75µg/mL. Hydroxyl groups demonstrated the most substantial contribution to the anti-cancer activity with a correlation coefficient -3.167. Skrofulein, forming a complex with the protein 3S79, exhibited a binding energy of -5.69kcal/mol and an inhibition constant of 67.46µM. The study findings demonstrate that the ethyl acetate extract of P. serratifolia and NP-015559 have the highest potential to perform as agents against breast cancer.


Cite this article:
Dini Hadiarti, Hamdil Mukhlishin, Masriani. Fingerprinting, Breast Cancer Inhibition of Premna serratifolia Extracts by In vitro and In silico Approaches. Research Journal Pharmacy and Technology. 2025;18(3):1006-2. doi: 10.52711/0974-360X.2025.00144

Cite(Electronic):
Dini Hadiarti, Hamdil Mukhlishin, Masriani. Fingerprinting, Breast Cancer Inhibition of Premna serratifolia Extracts by In vitro and In silico Approaches. Research Journal Pharmacy and Technology. 2025;18(3):1006-2. doi: 10.52711/0974-360X.2025.00144   Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-3-5


REFERENCES:
1.    Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024; 74(3): 229–63. https://doi.org/10.3322/caac.21834.
2.    Khairani S, Keban SA, Afrianty M. Evaluation of Drug Side Effects Chemotherapy on Quality of Life (QOL) Breast Cancer Patients at Hospital X in Jakarta. J Ilmu Kefarmasian Indones. 2019; 17(1): 9. https://doi.org/10.35814/jifi.v17i1.705.
3.    Ren Y, Yu J, Kinghorn AD. Development of Anticancer Agents from Plant-derived Sesquiterpene Lactones. Physiol Behav. 2017; 176(5): 139–48. https://doi.org/10.2174/0929867323666160510123255.
4.    Kim C, Kim B. Anti-cancer natural products and their bioactive compounds inducing ER stress-mediated apoptosis: A review. Nutrients. 2018; 10(8). https://doi.org/10.3390/nu10081021.
5.    Jose BE, Muralidharan P. Effect of Azima tetracantha Lam on Human Breast Cancer Cells MCF-7. Res J Sci Technol. 2019; 11(2): 109–12. https://doi.org/10.5958/2349-2988.2019.00017.2.
6.    Chac LD, Thinh BB, Yen NT. Anti-cancer activity of dry extract of Anoectochilus setaceus Blume against BT474 breast cancer cell line and A549 lung cancer cell line. Res J Pharm Technol. 2021; 14(2): 730–4. https://doi.org/10.5958/0974-360X.2021.00127.X.
7.    Nirmala S, Sabapathi PN, Sudhakar M, Bathula N, Sravanthi Y. Investigation of In vitro Anti-cancer property of Adhatoda vasica in Hela, HepG2, MCF-7, MDAMB-231 Cell Lines. Res J Pharmacogn Phytochem. 2019; 11(4): 212–6. https://doi.org/10.5958/0975-4385.2019.00036.0.
8.    T K, Firdous J, Revathy, Priya S, Varalakshmi B, Gomathi S, Geetha S, Muhamad N. Anti-cancer activity of aloe vera ethanolic leaves extract against in vitro cancer cells. Res J Pharm Technol. 2019; 12(5): 2167–70. https://doi.org/10.5958/0974-360X.2019.00360.3.
9.    Biradi M, Hullatti K. Cytotoxic activity of isolated constituents from leaves of Premna serratifolia on MCF-7 and HT-29 cell lines. Bangladesh J Pharmacol. 2015; 10(1): 205–8. https://doi.org/10.3329/bjp.v10i1.21658.
10.    Salih, G. A., Ahmad-Raus, R., Shaban, M. N. and Abdullah N. Extraction and purification of cytotoxic compounds from Premna serratifolia L . (Bebuas ) for human breast cancer treatment. Int Food Res J. 2017; 24(December):281–6.
11.    Biradi M, Hullatti K. Bioactivity guided isolation of cytotoxic terpenoids and steroids from Premna serratifolia. Pharm Biol. 2017; https: //doi.org/10.1080/13880209.2017.1301491.
12.    Demarque DP, Dusi RG, de Sousa FDM, Grossi SM, Silvério MRS, Lopes NP, Espindola LS. Mass spectrometry-based metabolomics approach in the isolation of bioactive natural products. Sci Rep. 2020; 10(1): 1–9. https://doi.org/10.1038/s41598-020-58046-y.
13.    Patridge E, Gareiss P, Kinch MS, Hoyer D. An analysis of FDA-approved drugs: natural products and their derivatives. Drug Discov Today. 2016; 21(2): 204–7. https://dx.doi.org/10.1016/j.drudis.2015.01.009.
14.    Nayim P, Sudhir K, Mbaveng AT, Kuete V, Sanjukta M. In vitro anticancer activity of Imperata cylindrica Root’s extract toward human cervical cancer and identification of potential bioactive compounds. Biomed Res Int. 2021; 2021(1): 1–12. https://doi.org/10.1038/s41598-020-58046-y
15.    Nocedo-Mena D, Ríos MY, Ramírez-Cisneros MÁ, González-Maya L, Sánchez-Carranza JN, Camacho-Corona M del R. Metabolomic Profile and Cytotoxic Activity of Cissus incisa Leaves Extracts. Plants. 2021; 10(1389): 1–18. https://doi.org/10.3390/ plants10071389.
16.    Li X, Wang P, Tong Y, Liu J, Shu G. UHPLC-Q-Exactive Orbitrap MS/MS-Based Untargeted Metabolomics and Molecular Networking Reveal the Differential Chemical Constituents of the Bulbs and Flowers of Fritillaria thunbergii. Molecules. 2022; 27(6944): 1–15. https:// doi.org/10.3390/molecules27206944.
17.    Singh H, Kumar R, Singh S, Chaudhary K, Gautam A, Raghava GPS. Prediction of anticancer molecules using hybrid model developed on molecules screened against NCI-60 cancer cell lines. BMC Cancer. 2016; 16(1): 1–11. https://dx.doi.org/10.1186/s12885-016-2082-y.
18.    Dewi Yuliana N, Prangdimurti E, Faridah DN. Ftir-Metabolomics To Correlate Sorghum’S Chemical Profile and Hct-116 Cytotoxicity Changes During Rice-Analogue Production. J Teknol dan Ind Pangan. 2018; 29(2): 110–8. https://doi.org/10.6066/jtip.2018.29.2.110.
19.    Cvetkovic M, Damjanović A, Stanojković TP, Đorđević I, Tešević V, Milosavljević S, Gođevac D. Integration of dry-column flash chromatography with NMR and FTIR metabolomics to reveal cytotoxic metabolites from Amphoricarpos autariatus. Talanta. 2020; 206(August 2019): 120248. https://doi.org/10.1016/j.talanta.2019.120248.
20.    Mahomoodally MF, Zengin G, Zheleva-Dimitrova D, Mollica A, Stefanucci A, Sinan KI, Aumeeruddy MZ. Metabolomics profiling, bio-pharmaceutical properties of Hypericum lanuginosum extracts by in vitro and in silico approaches. Ind Crops Prod. 2019; 133(November 2018): 373–82. https://doi.org/10.1016/j.indcrop.2019.03.033.
21.    Abdelhameed RFA, Elhady SS, Sirwi A, Samir H, Ibrahim EA, Thomford AK, Gindy AE, Hadad GM, Badr JM, Nafie MS. Thonningia sanguinea extract: Antioxidant and cytotoxic activities supported by chemical composition and molecular docking simulations. Plants. 2021; 10(10): 1–17. https://doi.org/10.3390/ plants10102156.
22.    Al Mousa AA, Abouelela ME, Hassane AMA, Al-Khattaf FS, Hatamleh AA, Alabdulhadi HS, Dahmash ND, Abo-Dahab NF. Cytotoxic Potential of Alternaria tenuissima AUMC14342 Mycoendophyte Extract: A Study Combined with LC-MS/MS Metabolic Profiling and Molecular Docking Simulation. Curr Issues Mol Biol. 2022; 44(10): 5067–85. https://doi.org/10.3390/cimb44100344.
23.    Eltamany EE, Elhady SS, Ahmed HA, Badr JM, Noor AO, Ahmed SA, Nafie MS. Chemical profiling, antioxidant, cytotoxic activities and molecular docking simulation of Carrichtera annua DC. (cruciferae). Antioxidants. 2020; 9(12): 1–27. https://doi.org/10.3390/antiox9121286
24.    Hadiarti D, Haryadi W, Matsjeh S, Swasono RT. Understanding phytochemical roles on α-glucosidase inhibitory activity based on metabolomic approach of Premna serratifolia leaves from West Borneo, Indonesia. Rasayan J Chem. 2021; 14(02): 1216–22. https://doi.org/10.31788/rjc.2021.1426320
25.    Erdenechimeg C, Guiqide A, Dejidmaa B, Chimedragchaa C, Purevsuren S. Total phenolic, flavonoid, alkaloid and iridoid content and preventive effect of lider-7-tang on lipopolysaccharide-induced acute lung injury in rats. Brazilian J Med Biol Res. 2017; 50(12): 6–11. https://dx.doi.org/10.1590/1414-431X20175916.
26.    Sut S, Dall’Acqua S, Uysal S, Zengin G, Aktumsek A, Picot-Allain C, Mahomoodally F. LC-MS, NMR fingerprint of Potentilla argentea and Potentilla recta extracts and their in vitro biopharmaceutical assessment. Ind Crops Prod. 2019; 131(December 2018): 125–33. https://doi.org/10.1016/j.indcrop.2019.01.047.
27.    Sugara TH. Kajian hubungan kuantitatif struktur-aktivitas, penambatan molekul, sintesis dan uji aktivitas antikanker senyawa iodoxanton. Universitas Gadjah Mada; 2022.
28.    Parveen A, Jough SS. Study on the cytotoxic impacts of thymol as the segment of Trachyspermum ammi on Bosom Disease (MCF-7) Cells. Asian J Res Chem. 2020; 13(5): 327–33. https://doi.org/10.5958/0974-4150.2020.00063.2.
29.    Urolagin DK, Jayakumari S. In vitro anti-cancer study of Vitis Viniferae, Ixora Coccinea and Piper Longum ethanolic extracts on human breast carcinoma cells. Res J Pharm Technol. 2018; 11(12): 5345–7. https://doi.org/10.5958/0974-360X.2018.00973.3.
30.    Isrul M, Juliansyah R, Saleh A, Yuliastri WO, Pusmarani J, Himaniarwati, Maulidina WOW. Phytochemical analysis, standardization and cytotoxic activity of Curcuma aureginosa extract in human breast cancer (MCF-7) cell line. Res J Pharm Technol. 2019; 12(4): 1967–73. https://doi.org/10.5958/0974-360X.2019.00329.9.
31.    Hadiarti D, Haryadi W, Matsjeh S, Swasono RT, Awaliyah N. Profiling of α-glucosidase inhibitors from ethyl acetate fraction of Buas-buas (Premna serratifolia) leaves using UHPLC-Q-Orbitrap HRMS and protein-ligand interaction with molecular docking. J Appl Pharm Sci. 2023; 13(2): 1–10. https://doi.org/10.7324/japs.2023.130210.
32.    Dianita R, Jantan I. Ethnomedicinal uses, phytochemistry and pharmacological aspects of the genus Premna: A review. Pharm Biol. 2017; 55(1): 1715–39. https://doi.org/10.1080/13880209.2017.1323225.
33.    Timotius KH, Simamora A, Santoso AW. Chemical characteristics and in vitro antidiabetic and antioxidant activities of Premna serratifolia L. leaf infusion and decoction. Pharmacogn J. 2018; 10(6): 1114–8. https://doi.org/10.5530/pj.2018.6.189.
34.    Arrebola-Liébanas FJ, Romero-González R, Garrido Frenich A. HRMS: Fundamentals and Basic Concepts. In: Romero-González R, Frenich AG, editors. Applications in High Resolution Mass Spectrometry: Food Safety and Pesticide Residue Analysis. 1st ed. Amsterdam: Elsevier Inc; 2017. p. 1–14.
35.    Barrientos R, Fernández-Galleguillos C, Pastene E, Simirgiotis M, Romero-Parra J, Ahmed S, Echeverria J. Metabolomic analysis, fast isolation of phenolic compounds, and evaluation of biological activities of the bark from Weinmannia trichosperma Cav. (Cunoniaceae). Front Pharmacol. 2020; 11(May): 1–13. https://doi.org/10.3389/fphar.2020.00780.
36.    Farooq MU, Mumtaz MW, Mukhtar H, Rashid U, Akhtar MT, Raza SA, Nadeem M. UHPLC-QTOF-MS/MS based phytochemical characterization and anti-hyperglycemic prospective of hydro-ethanolic leaf extract of Butea monosperma. Sci Rep. 2020; 10(1): 1–15. https://dx.doi.org/10.1038/s41598-020-60076-5.
37.    Yang Y, Meng J, Liu C, Zhang Y, Tian J, Gu D. GC-MS profiling, bioactivities and in silico theoretical explanation of cone oil from Pinus thunbergii Parl. Ind Crops Prod. 2019; 141(September):111765. https://doi.org/10.1016/j.indcrop.2019.111765.
38.    Shankari B, Rambabu M, Jayanthi S. Claudin-7 Inhibitors for Colon Cancer: A Computational Approach. Res J Pharm Technol. 2018; 11(8): 3415–8. https://doi.org/10.5958/0974-360X.2018.00629.7.
39.    Barua A, Kesavan K, Jayanthi S. Molecular docking studies of plant compounds to identify efficient inhibitors for ovarian cancer. Res J Pharm Technol. 2018; 11(9): 3811–5. https://doi.org/10.5958/0974-360X.2018.00698.4.
40.    Fadilah F, Wiyono L, Edina BC, Rahmawati RA, Erlina L, Tedjo A, Paramita RI. In silico study and in vitro test of extract Kaempferia pandurata Roxb. as Anti ER (+) Breast Cancer Cell Line MCF-7. Res J Pharm Technol. 2019; 12(5): 2391–5. https://doi.org/10.5958/0974-360X.2019.00400.


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available