Author(s):
Erlia Narulita, Riska Ayu Febrianti, Erma Sulistyaningsih, Achmad Syaiful Ludfi, Yuana Putri Meirina, Jepri Agung Priyanto, Priyambodo, Aditya Kurniawan
Email(s):
erlia.fkip@unej.ac.id
DOI:
10.52711/0974-360X.2025.00185
Address:
Erlia Narulita1,2*, Riska Ayu Febrianti1,3, Erma Sulistyaningsih1, Achmad Syaiful Ludfi2, Yuana Putri Meirina4, Jepri Agung Priyanto5, Priyambodo6, Aditya Kurniawan4
1Doctoral Program of Biotechnology, Postgraduate Program, Universitas Jember, Jember 68121, Indonesia.
2Department of Biology Education, University of Jember, Jember 68121, Indonesia.
3Department of Agricultural Product Technology, Universitas Jember, Jember 68121, Indonesia.
4Internal Diseases Department, dr. Soebandi Hospital, Jember 68118, Indonesia.
5Department Biology, Institut Pertanian Bogor, Bogor 16680, Indonesia.
6Department of Biology, Universitas Lampung, Lampung 35145, Indonesia.
*Corresponding Author
Published In:
Volume - 18,
Issue - 3,
Year - 2025
ABSTRACT:
This study aimed to explore immune responses and analyze of leukocyte cells induced by the recombinant spike protein with epitope sequences FKNHTSPDV obtained from the Indonesian SARS-CoV-2 isolate. The recombinant spike protein is synthesized by PT. Genetic Science Indonesia with a purity of 95% before being injected subcutaneously into Wistar rats on days 1, 14, and 28. Blood sampling was done before mice had injections at week 0 and mice that had undergone 3 injections or in the sixth week to obtaining an overview of leukocyte cells. Sera were harvested 14 days after each injection to determine the titers of IgG, IgM and CD4+ cells using ELISA. The results revealed that the IgG titers and CD4+ cell concentrations were found to increase after injection. Statistical test results showed meaningful differences between the control and treatment groups for IgG and CD4+ cells (p=0.003 and p=0.001 respectively). The average number of leukocytes in the three treatments was not significantly different. Conclusively, recombinant spike proteins with epitopal sequences of FKNHTSPDV isolates of Indonesian SARS-CoV-2 not only can induce humoral and cellular immune responses, and also has no impact on increasing leucocytes. It is indicated that the recombinant spike protein is feasible as a COVID-19 vaccine candidate.
Cite this article:
Erlia Narulita, Riska Ayu Febrianti, Erma Sulistyaningsih, Achmad Syaiful Ludfi, Yuana Putri Meirina, Jepri Agung Priyanto, Priyambodo, Aditya Kurniawan. Response of Recombinant Protein Based on Epitopes of the Spike Protein SARS-CoV-2 Indonesian Isolate: Immune and Leucocytes. Research Journal of Pharmacy and Technology. 2025;18(3):1276-2. doi: 10.52711/0974-360X.2025.00185
Cite(Electronic):
Erlia Narulita, Riska Ayu Febrianti, Erma Sulistyaningsih, Achmad Syaiful Ludfi, Yuana Putri Meirina, Jepri Agung Priyanto, Priyambodo, Aditya Kurniawan. Response of Recombinant Protein Based on Epitopes of the Spike Protein SARS-CoV-2 Indonesian Isolate: Immune and Leucocytes. Research Journal of Pharmacy and Technology. 2025;18(3):1276-2. doi: 10.52711/0974-360X.2025.00185 Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-3-46
REFERENCES:
1. Safavi A. Kefayat A. Mahdevar E. Abiri A. Ghahremani F. Exploring the Out of Sight Antigens of SARS-Cov-2 to Design A Candidate Multi-Epitope Vaccine by Utilizing Immunoinformatics Approaches. Vaccine. 2020; 38: 7612–28. https://doi.org/10.1016/j.vaccine.2020. 10.016
2. Gade A. Sawant R. Parkar S. Kegade P. SARS-Cov-2 The Beta Genome Coronavirus: A Brief Overview, Pathogenesis and Treatment. Asian J. Res. Pharm. Sci. 2020; 10(4): 299-310. http://dx.doi.org/10.5958/2231-5659.2020.00052.1
3. Shang J. Ye G. Shi K. Wan Y. Luo C. Aihara H et al Structural Basis of Receptor Recognition by SARS-CoV-2. Nature. 2020; 581:221–4. https://doi.org/10.1038/s41586-020-2179-y
4. Mahmoud MAK. Khudhair N. Gene Expression of ACE2 Gene in Patients Infected With COVID-19 and Comparing Them with Vaccine Recipients. Research Journal of Pharmacy and Technology. 2023; 16(8): 3601-7. https://doi.org/10.52711/0974-360X.2023.00594
5. Fitria L. Illiy LL. Dewi IR. Effect of Anticoagulants and Storage Time on the Hematological Profile of Rats (Rattus norvegicus Berkenhout, 1769) Strain Wistar. Biosfera. 2016; 33(1): 22 – 30. http://dx.doi.org/10.20884/1.mib.2016.33.1.321
6. Singh P. Sharma D. Singh V. Kumari S. Singh A. Jain H. Management of Non-hospitalized Patients with Acute SARS-CoV-2 (COVID-19) Viral Infection in Among Human Adult Population. Asian Journal of Management. 2023; 14(4): 227-2. https://doi.org/10.52711/2321-5763.2023.00038
7. Paswan D. Pande U. Singh A. Sharma D. Kumar S. Singh A. Epidemiology, Genomic Organization, and Life Cycle of SARS CoV-2. Asian Journal of Nursing Education and Research. 2023; 13(2): 141-4. https://doi.org/10.52711/2349-2996.2023.00031
8. Sitohang NA. Putra ED. Kamil H. Musman M. Phytochemical Screening of Putat Air [Barringtonia racemosa (L.)] Spreng Herbal Plants Found in Bireun, Aceh, Indonesia. Research Journal of Pharmacy and Technology. 2022; 15(6): 2727-2. https://doi.org/10.52711/0974-360X.2022.00456
9. Raj AAA. Vinnarasi J. Natural Potential Inhibitors for Covid 19 – An Insilico Approach. Research Journal of Pharmacy and Technology. 2021; 14(9): 4913-9. https://doi.org/10.52711/0974-360X.2021.00854
10. Kowsalya G. Shanmugasundaram S. In silico Analysis of Flavanones Capable of Inhibiting COVID19 RNA Dependent RNA Polymerase. Asian Journal of Research in Pharmaceutical Sciences. 2022; 12(2): 97-1. https://doi.org/10.52711/2231-5659.2022.00016
11. Parvatikar P. Saha B. Das SK. Reddy RC. Bagali S. Kulkarni RV. Patil AV. Biradar MS. Das KK. Molecular Docking Identifies Novel Phytochemical Inhibitors Against SARS-COV-2 for Covid-19 Therapy. Research Journal of Pharmacy and Technology. 2022; 15(2): 555-8. https://doi.org/10.52711/0974-360X.2022.00090
12. Jeyanathan M. Afkhami S. Smaill F. Miller MS. Lichty BD. Xing Z. Immunological Considerations For COVID-19 Vaccine Strategies. Nat Rev Immunol. 2020; 20: 615–32. https://doi.org/10.1038/s41577-020-00434-6
13. Taboga O. Tami C. Carrillo E. Nunez JI. Rodriguez A. Saiz JC et al A Large-Scale Evaluation of Peptide Vaccines Against Foot-and-Mouth Disease: Lack of Solid Protection in Cattle and Isolation of Escape Mutants. J Virol. 1997; 71: 2606e2614. https://doi.org/10.1128/jvi.71.4.2606-2614.1997
14. Pollet J. Chen W. Strych U. Recombinant Protein Vaccines, A Proven Approach Against Coronavirus Pandemics. Adv Drug Deliv Rev. 2021; 170: 71e82. https://doi.org/10.1016/j.addr.2021.01.001
15. Febrianti RA. Narulita E. In-Silico Analysis of Recombinant Protein Vaccines Based on The Spike Protein of Indonesian SARS-CoV-2 Through A Reverse Vaccinology Approach. J Taibah Univ Med Sci. 2022; 17(3): 467-478. https://doi.org/10.1016/j.jtumed. 2022.02.007
16. Wang Y. Wang L. Cao H. Liu C. SARS‐CoV‐2 S1 is Superior to the RBD as a COVID‐19 Subunit Vaccine Antigen. Journal of Medical Virology. 2020; 1-7. https://doi.org/10.1002/jmv.26320
17. Mazzoni A. Maggi L. Capone M. Spinicci M. Salvati L. Colao MG et al Cell-Mediated and Humoral Adaptive Immune Responses to SARS-Cov-2 are Lower in Asymptomatic than Symptomatic COVID-19 Patients. Eur J Immunol. 2020; 50: 2013–24. https://doi.org/10.1002/eji.202048915
18. Hansen D. Hunt BE. Falvo CA. Aravena MR. Kessler MK. Hall J. Thompson P. Rose K et al Morphological and Quantitative Analysis of Leukocytes in Free-Living Australian Black Flying Foxes (Pteropus alecto). PlosOne. 2022; 1–14. https://doi.org/10.1371/journal. pone.0268549
19. Prompetchara E. Ketloy C. Tharakhet K. Kaewpang P. Buranapraditkun S. Techawiwattanaboon T et al DNA Vaccine Candidate Encoding SARS-CoV-2 Spike Proteins Elicited Potent Humoral and Th1 Cell-Mediated Immune Responses Inmice. PLoS One. 2021; 16e0248007. https://doi.org/10.1371/journal.pone.0248007
20. Damayanti MD. Samsuri Setiasih NLE. Berata IK. Kidney Histopathological Alteration of White Rats After 21 Days Consumed Tape Yeast. Indonesia Medicus Veterinus. 2020; 9(6): 889-899. http://dx.doi.org/10.19087/imv.2020.9.6.889
21. Zhao J. Yuan Q. Wang H. Liu W. Liao X. Su Y et al Antibody Responses To SARS-CoV-2 in Patients with Novel Coronavirus Disease 2019. Clin Infect Dis. 2020; 71: 2027–34. https://doi.org/10.1093/cid/ciaa344
22. Long QX. Liu BZ. Deng HJ. Wu GC. Deng K. Chen YK et al. Antibody Responses to SARS-Cov-2 in Patients with COVID-19. Nat Med. 2020; 26: 845–8. https://doi.org/10.1038/s41591-020-0897-1
23. Suthar MS. Zimmerman MG. Kauffman RC. Mantus G. Linderman SL. Hudson WH et al Rapid Generation of Neutralizing Antibody Responses in COVID-19 Patients. Cell Rep Med. 2020; 1: 100040. https://doi.org/10.1016/j.xcrm.2020.100040
24. Ma H. Zeng W. He H. Zhao D. Jiang D. Zhou P et al. Serum IgA, IgM, and IgG Responses in COVID-19. Cell Mol Immunol. 2020; 17: 773–5. https://doi.org/10.1038/s41423-020-0474-z
25. Carrillo J. Izquierdo-Useros N. Ávila-Nieto C. Pradenas E. Clotet B. Blanco J. Humoral Immune Responses and Neutralizing Antibodies Against SARS-Cov-2; Implications in Pathogenesis and Protective Immunity. Biochem Biophys Res Commun. 2021; 538: 187–91. https://doi.org/10.1016%2Fj.bbrc.2020.10.108
26. Edridge AWD. Kaczorowska J. Hoste ACR. Bakker M. Klein M. Loens K et al Seasonal Coronavirus Protective Immunity Is Short-Lasting. Nat Med. 2020; 26: 1691–3. https://doi.org/10.1038/s41591-020-1083-1
27. Seydoux E. Homad LJ. MacCamy AJ. Parks KR. Hurlburt NK. Jennewein MF et al Analysis of A SARS-CoV-2-Infected Individual Reveals Development of Potent Neutralizing Antibodies with Limited Somatic Mutation. Immunity. 2020; 53: 98–105.e5. https://doi.org/10.1016%2Fj.immuni.2020.06.001
28. Jin Y. Wang M. Zuo Z. Fan C. Ye F. Cai Z et al Diagnostic Value and Dynamic Variance of Serum Antibody in Coronavirus Disease 2019. Int J Infect Dis. 2020; 94: 49–52. https://doi.org/10.1016/j.ijid.2020.03.065
29. Watupongoh GY. Rares FES. Porotuo JP. Marunduh SR. Respon Imunoglobulin M and Imunoglobulin G Terhadap SARS-CoV-2 Pada Dewasa (Response of Immunoglobulin M and Immunoglobulin G to SARS-CoV-2 in Adults). eBiomedik 2021; 9: 184–91. https://doi.org/10.35790/ebm.v9i2.31905
30. Grifoni A. Weiskopf D. Ramirez SI. Mateus J. Dan JM. Moderbacher CR et al Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell. 2020; 181: 1489–1501.e15. https://doi.org/10.1016%2Fj.cell.2020.05.015
31. Ni L. Ye F. Cheng ML. Feng Y. Deng YQ. Zhao H et al Detection of SARS-CoV-2-Specific Humoral and Cellular Immunity in COVID-19 Convalescent Individuals. Immunity. 2020; 52: 971–7e3. https://doi.org/10.1016/j.immuni.2020.04.023
32. Anderson AC. Joller N. Kuchroo VK. Lag-3, Tim-3, and TIGIT: Co-Inhibitory Receptors with Specialized Functions in Immune Regulation. Immunity. 2016; 44: 989–1004. https://doi.org/10.1016%2Fj.immuni.2016.05.001
33. Bratawidjaja KR. Rengganis I. Basic Immunology. 2014; Faculty of Medicine University of Indonesia.
34. Zuraidawati Darmawi Sugito Number of Leukocytes and Erythrocytes of White Rat (Rattus norvegicus) given Ethanol Extract of Soursop Flower (Annona muricata L.). Proceedings of the National Biotic Seminar. 2018: 588–93. https://doi.org/10.21157/j.ked. hewan.v14i2.11646
35. Stephenson I. Nicholson KG. Colegate A. Podda A. Wood J. Yoma E. Zambon M. Boosting Immunity to Influenza H5N1 with MF59-Adjuvanted H5N3 A/Duck/Singapore/97 Vaccine in A Primed Human Population. Vaccine. 2023; 21(15): 1687-1693. https://doi.org/10.1016/s0264-410x(02)00632-1
36. Suartha IN. Wibawan IWT. Putra IGN. Dewi NMRK. Mahardika IGNK. Adjuvant Selection in Avian Influenza Vaccine. Journal of Veterinary Medicine. 2011; 5(2): 49–52. https://doi.org/10.21157/j.ked.hewan.v5i2.733
37. Trilia NAO. Setyawan A. Adiputra YT Wardiyanto Immunogenicity of Inactivated Whole Cell Vaccine Aeromonas salmonicida and Black Cumin (Nigella sativa) in Carp (Cyprinus carpio). Journal of Aquaculture Engineering and Technology. 2014; 11(2): 250–256.
38. Rinawati D. Reza M. Overview of Counting the Number and Types of Leukocytes in Ex Leprosy Patients at RSK Sinatala Tangerang in 2015. Journal of Medikes. 2016; 3(1): 99-105.
39. O’Connell KE. Mikkola AM. Stepanek AM. Vernet A. Hall CD et al. Practical Murine Hematopathology: A Comparative Review and Implications for Research. Comparative Medicine. 2015; 65(2): 96–113. http://www.ncbi.nlm.nih.gov/pmc/articles/pmc4408895/
40. Anam K. Prabowo B. Kusuma MT. Yuliati et al Multi Epitopes Potential on Surface SARS-CoV-2 Protein as a Covid-19 Vaccine Candidate. Research Journal of Pharmacy and Technology. 2022; 15(4): 1437-2. https://doi.org/10.52711/0974-360X.2022.00238
41. Pratama H. Sumantri NI. Rahman SF. Kharisma VD. Ansori ANM. Epitope-based Vaccine Design from Alpha and Beta Variant of SARS-CoV-2: An Immunoinformatics Approach. Research Journal of Pharmacy and Technology. 2023; 16(10):4617-5. https://doi.org/10.52711/0974-360X.2023.00752