Author(s): Lambang Bargowo, Andry Elvandari, Shafira Kurnia Supandi, Liestyani Adista Darsana, Banun Kusumawardani, Chiquita Prahasanti

Email(s): chiquita-p-s@fkg.unair.ac.id

DOI: 10.52711/0974-360X.2025.00182   

Address: Lambang Bargowo1,2, Andry Elvandari5, Shafira Kurnia Supandi2, Liestyani Adista Darsana5, Banun Kusumawardani4, Chiquita Prahasanti2*
1Doctoral Programs, Faculty of Dental Medicine Universitas Airlangga, Surabaya, Indonesia.
2Department of Periodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
3Resident student, Department of Periodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
4Department of Biomedical Sciences, Faculty of Dentistry, Jember University, Jember, Indonesia.
5Periodontic Residency Program’s Student, Faculty of Dental Medicine Universitas Airlangga, Surabaya, Indonesia.
*Corresponding Author

Published In:   Volume - 18,      Issue - 3,     Year - 2025


ABSTRACT:
Tooth loss is a significant issue in Indonesia. Dental implants are a treatment option for missing tooth replacement. A high-quality dental implant ought to have superior osseointegration. The gold standard for dental implants is titanium. According to specific research, thin mucosa may turn bluish and develop hypersensitive reactions when exposed to titanium. In dentistry, polymethylmethacrylate, or PMMA, is a frequently utilized polymer. It requires additional materials since it lacks osteoconductivity despite having high mechanical qualities. One of the main minerals in bone and teeth is hydroxyapatite (HAp), which is also biocompatible, osteoconductive, and can fuse with bone to promote the regeneration of bone. Combining these materials will enhance their osteoconductivity, biocompatibility, and mechanical qualities. Immunohistochemical analysis is utilized to observe the expression of OPG and RANKL in osteoblast cells in vivo, providing insights into the potential of PMMA/HAp as a candidate implant material. This research aims to investigate the OPG/RANKL ratio after the administration of PMMA/HAp. The study was conducted in vivo on 42 rats divided into six groups. Control group (only femur drilling) on day 7 (K7), control on day 14 (K14), and treatment groups with PMMA/HAp implantation: GMP on day 7 (GMP7), BBK on day 7 (BBK7), GMP on day 14 (GMP14), and BBK on day 14 (BBK14). Subsequently, immunohistochemistry was performed on the expression of OPG and RANKL. There was a significant increase in OPG (on days 7 and 14) in both treatment groups compared to the control, and a non-significant decrease in RANKL (on day 7) in the PMMA/HAp-GMP group following the implantation of Polymethylmethacrylate (PMMA)–Hydroxyapatite (HAp) on the femur of Wistar rats (Rattus norvegicus). The OPG/RANKL ratio in the GMP group on the 7th day was slightly lower than in the BBK group on the 7th. On the 14th day, the OPG/RANKL ratio on both GMP and BBK experienced significant increases compared to the control group.


Cite this article:
Lambang Bargowo, Andry Elvandari, Shafira Kurnia Supandi, Liestyani Adista Darsana, Banun Kusumawardani, Chiquita Prahasanti. OPG/RANKL Ratio Post Implantation of Polymethylmethacrylate -Hydroxyapatite (PMMA/HAp) in Wistar Rats (Rattus norvegicus) Femur. Research Journal of Pharmacy and Technology. 2025;18(3):1258-2. doi: 10.52711/0974-360X.2025.00182

Cite(Electronic):
Lambang Bargowo, Andry Elvandari, Shafira Kurnia Supandi, Liestyani Adista Darsana, Banun Kusumawardani, Chiquita Prahasanti. OPG/RANKL Ratio Post Implantation of Polymethylmethacrylate -Hydroxyapatite (PMMA/HAp) in Wistar Rats (Rattus norvegicus) Femur. Research Journal of Pharmacy and Technology. 2025;18(3):1258-2. doi: 10.52711/0974-360X.2025.00182   Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-3-43


REFERENCES:
1.    Favianozaki R, Hanin I. Psycho-social impact of tooth loss among Teenagers. J Syiah Kuala Dent Soc 2022; 7(1): 15–20. doi: 10.24815/jds.v7i1.27250
2.    MoH. Laporan Nasional Riset Kesehatan Dasar 2018. Lembaga Penerbit Badan Penelitian dan Pengembangan Kesehatan (LPB); 2018.
3.    Ulfa W, Amalia R, Santoso AS. The relationship between tooth loss and pre-elderly nutritional status and quality of life. Dent J 2023; 56(2): 80–6. doi: 10.20473/J.DJMKG.V56.I2.P80-86
4.    Cooper LF, Shirazi S. Osseointegration—the biological reality of successful dental implant therapy: a narrative review. Front Oral Maxillofac Med 2022; 4(1): 0–2. doi: 10.21037/fomm-21-77
5.    Che Y, Min S, Wang M, Rao M, Quan C. Biological activity of hydroxyapatite/poly(methylmethacrylate) bone cement with different surface morphologies and modifications for induced osteogenesis. J Appl Polym Sci 2019; 136(47): 1–8. doi: 10.1002/app.48188
6.    Prahasanti C, Setijanto D, Ernawati DS, Ridwan RD, Buntoro D, Yuliati A, et al. Utilization of polymethyl methacrylate and hydroxyapatite composite as biomaterial candidate for porous trabecular dental implant fixture development: a narrative review. Res J Pharm Technol. 2022; 15(4): 1863–9. doi: 10.52711/0974-360X.2022.00312
7.    Muntamah. Sintesis dan karakterisasi hidroksiapatit dari limbah cangkang kerang darah (Anadara granosa, sp). 2011.
8.    Kang IG, Park CI, Lee H, Kim HE, Lee SM. Hydroxyapatite microspheres as an additive to enhance radiopacity, biocompatibility, and osteoconductivity of poly (methyl methacrylate) bone cement. Materials (Basel) 2018; 11(2): 258. doi: 10.3390/ma11020258
9.    Sa Y, Yu N, Wolke JGC, Chanchareonsook N, Goh BT, Wang Y, et al. Bone Response to Porous Poly(methyl methacrylate) Cement Loaded with Hydroxyapatite Particles in a Rabbit Mandibular Model. Tissue Eng - Part C Methods 2017; 23(5): 262–73. doi: 10.1089/ten.tec.2016.0521
10.    Putri TS, Hayashi K, Ishikawa K. Fabrication of three-dimensional interconnected porous blocks composed of robust carbonate apatite frameworks. Ceram Int [Internet] 2020; 46(12): 20045–9. doi: 10.1016/j.ceramint.2020.05.076
11.    Maté Sánchez de Val JE, Calvo-Guirado JL, Gómez-Moreno G, Pérez-Albacete Martínez C, Mazón P, De Aza PN. Influence of hydroxyapatite granule size, porosity, and crystallinity on tissue reaction in vivo. Part A: synthesis, characterization of the materials, and SEM analysis. Clin Oral Implants Res 2016; 27(11): 1331–8. doi: 10.1111/clr.12722
12.    Darjanki CM, Hananta JS, Prahasanti C, Ulfah N, Kusumawardani B, Wijaksana IKE, et al. Expression of VEGF and BMP-2 in Osteoblast cells exposed to a combination of polymethylmethacrylate (PMMA) and hydroxyapatite (HAp). J Oral Biol Craniofacial Res [Internet] 2023; 13(2): 243–8. doi: 10.1016/j.jobcr.2023.02.006
13.    Vermeulen S, Tahmasebi Birgani Z, Habibovic P. Biomaterial-induced pathway modulation for bone regeneration. Biomaterials [Internet] 2022; 283(January): 121431. doi: 10.1016/j.biomaterials.2022.121431
14.    Darjanki CM, Prahasanti C, Fitria A E, Kusumawardani B, Wijaksana IKE, Aljunaid M. RUNX2 and ALP expression in osteoblast cells exposed by PMMA-HAp combination: An in vitro study. J Oral Biol Craniofacial Res [Internet] 2023; 13(2): 277–82. doi: 10.1016/j.jobcr.2023.02.007
15.    Mahyudin F, Utomo DN. Graf tulang dan material pengganti tulang. 2018;
16.    Khotib J, Gani MA, Budiatin AS, Lestari MLAD, Rahadiansyah E, Ardianto C. Signaling pathway and transcriptional regulation in osteoblasts during bone healing: Direct involvement of hydroxyapatite as a biomaterial. Pharmaceuticals 2021; 14(7). doi: 10.3390/ph14070615
17.    Manalu JL, Soegijono B, Indrani DJ. Characterization of hydroxyapatite derived from bovine bone. Asian J Appl Sci 2015; 3(4): 758–65.
18.    Pridanti KA, Cahyaraeni F, Harijanto E, Soebagijo, Rianti D, Kristanto W, et al. Characteristics and Cytotoxicity of Hydroxyapatite From Padalarang-Cirebon Limestone As Bone Grafting Candidate. Biochem Cell Arch 2020; 20(2): 4727–33.
19.    Hassumi JS, Mulinari-Santos G, Fabris AL da S, Jacob RGM, Gonçalves A, Rossi AC, et al. Alveolar bone healing in rats: micro-CT, immunohistochemical and molecular analysis. J Appl Oral Sci. 2018; 26: 1–12. doi: 10.1590/1678-7757-2017-0326
20.    Kapasa E, Giannoudis P, Jia X, Hatton P, Yang X. The Effect of RANKL/OPG Balance on Reducing Implant Complications. J Funct Biomater. 2017; 8(4): 42. doi: 10.3390/jfb8040042
21.    Yavropoulou MP, Yovos JG. The role of the Wnt signaling pathway in osteoblast commitment and differentiation. Hormones-Athens- 2007; 6(4): 279. doi: 10.14310/horm.2002.1111024
22.    Lennerås M, Palmquist A, Norlindh B, Emanuelsson L, Thomsen P, Omar O. Oxidized Titanium Implants Enhance Osseointegration via Mechanisms Involving RANK/RANKL/OPG Regulation. Clin Implant Dent Relat Res. 2015; 17: e486–500. doi: 10.1111/cid.12276

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available