Author(s): Sneha Pandey, Anoop Kumar Tiwari, Kottakkaran Sooppy Nisar, Abhigyan Nath

Email(s): abhigyannath01@gmail.com

DOI: 10.52711/0974-360X.2025.00181   

Address: Sneha Pandey1, Anoop Kumar Tiwari2, Kottakkaran Sooppy Nisar3, Abhigyan Nath1*
1Department of Biochemistry, Pt. Jawahar Lal Nehru Memorial Medical College, Raipur 492001, India
2Department of Computer Science and Information Technology, Central University of Haryana, Mahendergarh 123031, India
3Departmentof Mathematics, College of Science and Humanities in Alkharj, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
*Corresponding Author

Published In:   Volume - 18,      Issue - 3,     Year - 2025


ABSTRACT:
The blood-brain barrier (BBB) is an essential physiological barrier that regulates the transport of substances from the circulation to the brain. Accurate prediction of BBB permeability is essential for understanding drug delivery to the brain and for developing effective therapies for neurological disorders.Clinical experiments have provided a more accurate measure of BBB permeability.Nevertheless, these methods take time and are labor-intensive.Consequently, several computational methods have attempted to predict BBB permeability; however, their accuracy remains a challenge.Within the scope of this investigation, we provide a novel strategy for enhancing the precision of BBB permeability prediction models. Our model integrates a diverse set of molecular descriptors and employs advanced machine-learning algorithms to identify complex connections between chemical compounds and BBB permeability.By using a large dataset of experimental observations and various resampling techniques, we increased the prediction performance of our model. Different machine learning algorithms (Random Forest (RF) and Gradient Boosting Machine (GBM)) algorithms were used and further analyzed using model agnostic interpretation methods, to accurately predict BBB permeability. The highest accuracy of 92.5% was obtained by RF with feature set of JOELib descriptor (SMOTE oversampled), followed by RF with feature set of JOELib descriptor (GAN oversampled) and the accuracy of 92.1%.Shapley plots, ALE plots, and variable importance plots (VIP) were used to depict the significance of the features.


Cite this article:
Sneha Pandey, Anoop Kumar Tiwari, Kottakkaran Sooppy Nisar, Abhigyan Nath. Physicochemical determinants of blood brain barrier penetrating molecules. Research Journal of Pharmacy and Technology. 2025;18(3):1250-7. doi: 10.52711/0974-360X.2025.00181

Cite(Electronic):
Sneha Pandey, Anoop Kumar Tiwari, Kottakkaran Sooppy Nisar, Abhigyan Nath. Physicochemical determinants of blood brain barrier penetrating molecules. Research Journal of Pharmacy and Technology. 2025;18(3):1250-7. doi: 10.52711/0974-360X.2025.00181   Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-3-42


REFERENCES:
1.    Saxena D. Sharma A. Siddiqui M. Kumar R. Blood Brain Barrier Permeability Prediction Using Machine Learning Techniques: An Update. Curr Pharm Biotechnol. 2019;20.
2.    Menken M. Munsat TL. Toole JF. The Global Burden of Disease Study: Implications for Neurology. Arch Neurol. 2000; 57(3): 418–20.
3.    Feigin V. Vos T. Nichols E. Owolabi M. Carroll W. Dichgans M et al. The global burden of neurological disorders: translating evidence into policy. Lancet Neurol. 2019;19.
4.    Kapruwan K. Parida R. Muniyan R. In silico mutational study reveal improved interaction between Beta-Hexosaminidase A and GM2 activator essential for the breakdown of GM2 and GA2 Gangliosides on Tay-Sachs disease. Res J Pharm Technol. 2017; 10(11): 3899–902.
5.    Profaci C. Munji R. Pulido R. Daneman R. The blood–brain barrier in health and disease: Important unanswered questions. J Exp Med. 2020; 217.
6.    Pardridge W. Blood-brain barrier delivery. Drug Discov Today. 2007; 12: 54–61.
7.    Harilal S. Jose J. Parambi DGT. Kumar R. Unnikrishnan MK. Uddin MdS et al. Revisiting the blood-brain barrier: A hard nut to crack in the transportation of drug molecules. Brain Res Bull. 2020; 160: 121–40.
8.    Pardridge WM. The blood-brain barrier: Bottleneck in brain drug development. NeuroRX. 2005; 2(1): 3–14.
9.    Salman M. Kitchen P. Yool A. Bill R. Recent breakthroughs and future directions in drugging aquaporins. Trends Pharmacol Sci. 2021; 43.
10.    Daneman R. Prat A. The Blood-Brain Barrier. Cold Spring Harb Perspect Biol. 2015;7.
11.    Rathore S. Prashant V. Prashant D. Nath A. Shivram A. Screening of Phytochemicals for Antisickling effects. Res J Pharm Technol. 2023;16(12):5790–5.
12.    Bickel U. How to measure drug transport across the blood-brain barrier. NeuroRX. 2005;2(1):15–26.
13.    Massey S. Urcuyo Acevedo J. Marin BM. Sarkaria J. Swanson K. Quantifying Glioblastoma Drug Response Dynamics Incorporating Treatment Sensitivity and Blood Brain Barrier Penetrance From Experimental Data. Front Physiol. 2020; 11:830.
14.    Mi Y. Mao Y. Cheng H. Ke G. Liu M. Fang C. et al. Studies of blood–brain barrier permeability of gastrodigenin in vitro and in vivo. Fitoterapia. 2020;140:104447.
15.    Hu Y. Zhao T. Zhang N. Zhang Y. Cheng L. A Review of Recent Advances and Research on Drug Target Identification Methods. Curr Drug Metab. 2018;19.
16.    Salmanpour MR. Shamsaei M. Saberi A. Klyuzhin IS. Tang J. Sossi V et al. Machine learning methods for optimal prediction of motor outcome in Parkinson’s disease. Phys Medica PM Int J Devoted Appl Phys Med Biol Off J Ital Assoc Biomed Phys. 2020; 69: 233–40.
17.    Naresh K. Prabakaran N. Kannadasan R. Boominathan P. Diabetic Medical Data Classification using Machine Learning Algorithms. Res J Pharm Technol. 2018; 11(1): 97–100.
18.    Meng F. Xi Y. Huang J. Ayers PW. A curated diverse molecular database of blood-brain barrier permeability with chemical descriptors. Sci Data. 2021; 8(1): 289.
19.    Backman TWH. Cao Y. Girke T. ChemMine tools: an online service for analyzing and clustering small molecules. Nucleic Acids Res. 2011;39(suppl_2):W486–91.
20.    Chawla N. Bowyer K. Hall L. Kegelmeyer W. SMOTE: Synthetic Minority Over-sampling Technique. J Artif Intell Res JAIR. 2002; 16: 321–57.
21.    Goodfellow I. Pouget-Abadie J. Mirza M. Xu B. Warde-Farley D. Ozair S et al. Generative Adversarial Networks. Adv Neural Inf Process Syst. 2014;3.
22.    Mohammed R. Rawashdeh J. Abdullah M. Machine Learning with Oversampling and Undersampling Techniques: Overview Study and Experimental Results. ICICS. 2020; 243.
23.    Daszykowski M. Walczak B. Massart DL. Representative subset selection. Anal Chim Acta. 2002 Sep 10;468(1):91–103.
24.    Kennard R. Stone L. Computer Aided Design of Experiments. Technometrics. 2012; 11: 137–48.
25.    Saptoro A. Tadé M. A Modified Kennard-Stone Algorithm for Optimal Division of Data for Developing Artificial Neural Network Models. Chem Prod Process Model. 2012;7.
26.    Nath A. Subbiah K. The role of pertinently diversified and balanced training as well as testing data sets in achieving the true performance of classifiers in predicting the antifreeze proteins. Neurocomputing. 2017; 272.
27.    Devi SM. Sruthi A. Jothi SC. MRI liver tumor classification using machine learning approach and structure analysis. Res J Pharm Technol. 2018; 11(2): 434–8.
28.    Varghese BK. Amali D. Devi K. Prediction of parkinson’s disease using machine learning techniques on speech dataset. Res J Pharm Technol. 2019; 12(2): 644–8.
29.    DencelinX L. Ramkumar T. Distributed machine learning algorithms to classify protein secondary structures for drug design-a survey. Res J Pharm Technol. 2017; 10(9): 3173–80.
30.    Breiman L. Random Forests. Mach Learn. 2001; 45(1): 5–32.
31.    Natekin A. Knoll A. Gradient Boosting Machines, A Tutorial. Front Neurorobotics. 2013; 7: 21.
32.    Ling CX. Huang J. Zhang H. AUC: A Better Measure than Accuracy in Comparing Learning Algorithms. In: Xiang Y, Chaib-draa B, editors. Advances in Artificial Intelligence. Berlin, Heidelberg: Springer Berlin Heidelberg; 2003: 329–41.
33.    Shityakov S. Neuhaus W. Dandekar T. Förster C. Analyzing Molecular Polar Surface Descriptors to Predict Blood-Brain Barrier Permeation. Int J Comput Biol Drug Des. 2013; 6: 146–56.
34.    Kenny PW. Hydrogen-Bond Donors in Drug Design. J Med Chem. 2022; 65(21): 14261–75.
35.    Gao Z. Chen Y. Cai X. Xu R. Predict drug permeability to blood–brain-barrier from clinical phenotypes: drug side effects and drug indications. Bioinformatics. 2017; 33(6): 901–8.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available