Author(s):
Mustika Erlinaningrum, Abdul Rohman, Agustina Ari Murti Budi Hastuti
Email(s):
mustikaerlinaningrum@mail.ugm.ac.id , mustikaerlinaningrum@mail.ugm.ac.id , abdulkimfar@gmail.com , Agustina.ari.m.b.h@mail.ugm.ac.id
DOI:
10.52711/0974-360X.2025.00179
Address:
Mustika Erlinaningrum1,2, Abdul Rohman3,4*, Agustina Ari Murti Budi Hastuti3,4
1Master in Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Gadjah Mada, Jl. Sekip Utara, Sleman, Yogyakarta 55281, Indonesia.
2Indonesian Food and Drug Authority, District of Manokwari, Papua Barat 98312, Indonesia.
3Center of Excellence Institute for Halal Industry and Systems, Universitas Gadjah Mada, Yogyakarta 55281 Indonesia.
4Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
*Corresponding Author
Published In:
Volume - 18,
Issue - 3,
Year - 2025
ABSTRACT:
Red fruit is widely grown on the island of Papua and has multiple benefits. This research uses Visible Near-Infrared (Vis/NIR) spectroscopy and Fourier Transform Infrared (FTIR) combined with chemometrics, which has been developed for the analysis of red fruit oil (RFO) in a mixture of coconut oil (CO) as an adulterant in authentication studies. Scanning the binary mixture of CO and RFO using infrared spectroscopy in several frequency regions, both the near-infrared (680 – 2600nm) and the mid-infrared (4000 – 600cm–1) whose variations were observed to identify frequency regions that provide a multivariate calibration model based on partial least squares (PLS) is the most accurate. In addition, the Vis/NIR and FTIR spectra were derivatized (first and second derivative) to see which type of spectrum gave the best spectral performance in the calibration model. The results of this research show that the second derivatization Vis/NIR spectrum in the 680 - 2600 nm frequency region and the normal FTIR spectrum in the 4000 - 600cm-1 frequency region can determine CO in RFO more accurately with each RMSEC of 0.0238714 and 3.07, RMSEP of 0.0281795 and 0.0503, and R2 value of 0.984 and 0.9903. The combination of Vis/NIR and FTIR spectra with PLS are a reliable method to verify the authenticity of RFO by quantitatively analyzing CO as an adulterant in RFO.
Cite this article:
Mustika Erlinaningrum, Abdul Rohman, Agustina Ari Murti Budi Hastuti. Application of Vis/NIR and FTIR Spectroscopy combined with Chemometrics for the Authentication of Red fruit oil from Coconut oil. Research Journal of Pharmacy and Technology. 2025;18(3):1237-3. doi: 10.52711/0974-360X.2025.00179
Cite(Electronic):
Mustika Erlinaningrum, Abdul Rohman, Agustina Ari Murti Budi Hastuti. Application of Vis/NIR and FTIR Spectroscopy combined with Chemometrics for the Authentication of Red fruit oil from Coconut oil. Research Journal of Pharmacy and Technology. 2025;18(3):1237-3. doi: 10.52711/0974-360X.2025.00179 Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-3-40
REFERENCES:
1. Renyaan, A. W. A.; Suprayitno, E.; Aulani’am; Hariati, A. M. Nutrient Content and Endemic Red Fruit Oil (Pandanus Austrosinensis) Fatty Acid Profile in Papua Indonesia. J. Phys.: Conf. Ser. 2020; 1665 (1): 012019. https://doi.org/10.1088/1742-6596/1665/1/012019.
2. Maria, M. S.; Sujuti, H.; Kurnia, D.; Widjanarko, S. B. Methanol and Ethyl Acetate Extracts of Red Fruit (Pandanus Conoideus Lam.) Short-Red Showed High of Phenolic and Radicals Scavenging Activities. Rese. Jour. of Pharm. and Technol. 2020; 13 (9): 4158. https://doi.org/10.5958/0974-360X.2020.00734.9.
3. Murtiningrum, M.; Sarungallo, Z. L.; Mawikere, N. L. The Exploration and Diversity of Red Fruit (Pandanus Conoideus L.) from Papua Based on Its Physical Characteristics and Chemical Composition. Biodiversitas. 2012; 13(3): 124–129. https://doi.org/10.13057/biodiv/d130304.
4. Rohman, A.; Riyanto, S.; Sasi, A. M.; Yusof, F. Mohd. The Use of FTIR Spectroscopy in Combination with Chemometrics for the Authentication of Red Fruit (Pandanus Conoideus Lam) Oil from Sunflower and Palm Oils. Food Bioscience. 2014; 7: 64–70. https://doi.org/10.1016/j.fbio.2014.05.007.
5. Sarungallo, Z. L.; Hariyadi, P.; Andarwulan, N.; Purnomo, E. H. Characterization of Chemical Properties, Lipid Profile, Total Phenol and Tocopherol Content of Oils Extracted from Nine Clones of Red Fruit (Pandanus Conoideus). Kasetsart J. (Nat. Sci.) 2015; 49: 237–250.
6. Wabula, R. A.; Seniwati; Widiastuti, H. Aktivitas antioksidan ekstrak etanol buah merah (Pandanus conoideus Lam.) dengan metode Ferric Reducing Antioxidant Power (FRAP). Window of Health : Jurnal Kesehatan. 2019: 2 (4): 307–337.
7. Fitria, E.; Hariyadi, P.; Wijaya, H. Identifikasi Dan Fraksinasi Karotenoid Pada Minyak Buah Merah (Pandanus Conoideus). Journal of Agro-based Industry. 2020; 37(1): 7–19.
8. Lubis, E. H.; Wijaya, H.; Lestari, N. Mempelajari Ekstraksi Dan Stabilitas Total Karotenoid, α Dan β Cryptoxanthin Dalam Ekstrak Buah Merah (Pandanus Conoideus Lamk). Jurnak Riset Teknologi Industri. 2012; 6 (12): 39–53.
9. Achadiyani; Septiani, L.; Faried, A.; Bolly, H. M. B.; Kurnia, D. Role of the Red Fruit (Pandanus Conoideus Lam) Ethyl Acetate Fraction on the Induction of Apoptosis vs. Downregulation of Survival Signaling Pathways in Cervical Cancer Cells. EJMP 2016; 13 (2): 1–9. https://doi.org/10.9734/EJMP/2016/24492.
10. Asrianto, A.; Asrori, A.; Sitompul, L. S.; Sahli, I. T.; Hartati, R. Uji aktivitas ekstrak etanol biji buah merah (Pandanus conoideus Lamk.) terhadap bakteri Escherichia coli dan Staphylococcus aureus. B : JIB 2021; 9 (1): 1–9. https://doi.org/10.33394/bjib.v9i1.3437.
11. Herdiyati, Y.; Atmaja, H. E.; Satari, M. H.; Kurnia, D. Potential Antibacterial Flavonoid from Buah Merah (Pandanus Conoideus Lam.) against Pathogenic Oral Bacteria of Enterococcus Faecalis ATCC 29212. The Open Dentistry Journal. 2020; 14: 433–439. https://doi.org/10.2174/1874210602014010433.
12. Indrawati, I. Sensitivity of Pathogenic Bacteria to Buah Merah (Pandanus Conoideus Lam.). In AIP Conference Proceedings 1744; AIP Publishing: Yogyakarta, Indonesia, 2016; p 020028. https://doi.org/10.1063/1.4953502.
13. Ningtyas, N. S. I.; Tirtasari, K.; Agustin, A. L. D. Proteksi minyak buah merah (Pandanus conoideus Lam) terhadap jumlah folikel yang terpapar plumbum. Jurnal Sangkareang Mataram. 2019; 5 (4): 7–9.
14. Rohman, A.; Riyanto, S.; Yuniarti, N.; Saputra, W. R.; Utami, R.; Mulatsih, W. Antioxidant Activity, Total Phenolic, and Total Flavaonoid of Extracts and Fractions of Red Fruit (Pandanus Conoideus Lam). International Food Research Journal. 2010; 17: 97–106.
15. Taher, A.; Repaso, M. S. Aktivitas antioksidan minyak buah merah dari kultivar Pandanus conoideus L. yang berbeda. Jurnal Natural 2009, 8 (1), 48–51.
16. Utami, A. D.; Priyowidodo, D. The effect of red fruit’s (Pandanus conoideus) extract to eritrocytes, hemoglobin, PCV and TPP concentrations of mice (Mus musculus) infected by Toxoplasma gondii. Jurnal Sain Veteriner 2014; 32(1): 13–21. https://doi.org/10.22146/jsv.5418.
17. Warsono, I. U.; Murtiningrum; Sarungallo, Z. L. Pengaruh Minyak Buah Merah (Pandanus Conoideus L.) Pada Plasma Darah Kelinci Yang Diberi Pakan Kolesterol. Prosiding Seminar Nasional Akselerasi Pembangunan Pertanian dan Perdesaan Berbasis Inovasi dan Sumberdaya Lokal. 2011, 578–582.
18. Situmorang, C. C.; Dewi, N. N. S. A. The Administration of Red Fruit Extract (Pandanus Conoideus Lamk.) to Reduce Menstrual Pain among Adolescent Girls. j.mw 2020; 5 (2): 72–80. https://doi.org/10.25077/jom.5.2.72-80.2020.
19. Subawa, A. A. N.; Yasa, I. W. P. S.; Jawi, I. M.; Mahendra, A. N. Antioxidant and Hypolipidemic Effects of Ipomoea Batatas L and Pandanus Conoideus Lam Combination on Rats Fed with High Cholesterol Diet. Open Access Maced J Med Sci 2021; 9 (A): 473–476. https://doi.org/10.3889/oamjms.2021.6390.
20. Febriyanti, R. Pengaruh pemberian ekstrak buah merah (Pandanus conoideus) terhadap kadar glukosa darah tikus putih (Rattus norvegicus) diabetik. Jurnal Peternakan 2011; 8 (1): 21–26.
21. Nugraha, A. S.; Hadi, N. S.; Siwi, S. U. Efek hepatoprotektif ekstrak buah merah (Pandanus conoideus Lam.) pada hati mencit jantan galur Swiss induksi dengan CCl4. J.Nat. Indones 2008; 11 (1): 24–30. https://doi.org/10.31258/jnat.11.1.24-30.
22. Sugiritama, I. W.; Ratnayanti, I. G. A. D.; Wiryawan, I. G. N. S.; Wahyuniari, I. A. I.; Linawati, N. M.; Arijana, I. G. K. N. Effect of Red Fruit Oil (Pandanus Conoideus Lam) on Animal Model of Preeclampsia. IJSR 2016; 5(7): 1770–1773. https://doi.org/10.21275/v5i7.ART2016604.
23. Xia, N.; Schirra, C.; Hasselwander, S.; Förstermann, U.; Li, H. Red Fruit (Pandanus Conoideus Lam) Oil Stimulates Nitric Oxide Production and Reduces Oxidative Stress in Endothelial Cells. Journal of Functional Foods 2018; 51: 65–74.
24. Rahmawati, D.; Anggraini, W.; Djamil, M. Cytotoxicity of Red Fruit Ethyl Acetate Extract (Pandanus Conoideus Lam.) on Squamous Cell Carcinoma Cell Line (HSC-3). Sci Dent J. 2021; 5 (1): 42–46. https://doi.org/10.4103/SDJ.SDJ_57_20.
25. Sarungallo, Z. L.; Hariyadi, P.; Andarwulan, N.; Purnomo, E. H. Pengaruh Metode Ekstraksi Terhadap Mutu Kimia Dan Komposisi Asam Lemak Minyak Buah Merah (Pandanus Conoideus). Jurnal Teknologi Industri Pertanian 2014; 24(3): 209–217.
26. Yuhono, JT.; Pribadi, E. R. Analisis Titik Impas Harga Dan Sistim Pemasaran Pada Industri Minyak Buah Merah (Pandanus Conoideus Lamk). Bul. Littro 2007, XVIII (2), 188–202.
27. Lerma-García, M. J.; Ramis-Ramos, G.; Herrero-Martínez, J. M.; Simó-Alfonso, E. F. Authentication of Extra Virgin Olive Oils by Fourier-Transform Infrared Spectroscopy. Food Chemistry 2010; 118 (1): 78–83. https://doi.org/10.1016/j.foodchem.2009.04.092.
28. Rohman, A.; Setyaningrum, D. L.; Riyanto, S. FTIR Spectroscopy Combined with Partial Least Square for Analysis of Red Fruit Oil in Ternary Mixture System. International Journal of Spectroscopy 2014; 2014: 1–5. https://doi.org/10.1155/2014/785914.
29. Dais, P.; Hatzakis, E. Quality Assessment and Authentication of Virgin Olive Oil by NMR Spectroscopy: A Critical Review. Analytica Chimica Acta 2013; 765: 1–27. https://doi.org/10.1016/j.aca.2012.12.003.
30. Maestrello, V.; Solovyev, P.; Bontempo, L.; Mannina, L.; Camin, F. Nuclear Magnetic Resonance Spectroscopy in Extra Virgin Olive Oil Authentication. Comp Rev Food Sci Food Safe 2022: 21 (5), 4056–4075. https://doi.org/10.1111/1541-4337.13005.
31. Zou, M.-Q.; Zhang, X.-F.; Qi, X.-H.; Ma, H.-L.; Dong, Y.; Liu, C.-W.; Guo, X.; Wang, H. Rapid Authentication of Olive Oil Adulteration by Raman Spectrometry. J. Agric. Food Chem. 2009, 57 (14), 6001–6006. https://doi.org/10.1021/jf900217s.
32. Peng, D.; Bi, Y.; Ren, X.; Yang, G.; Sun, S.; Wang, X. Detection and Quantification of Adulteration of Sesame Oils with Vegetable Oils Using Gas Chromatography and Multivariate Data Analysis. Food Chemistry 2015; 188: 415–421. https://doi.org/10.1016/j.foodchem.2015.05.001.
33. Jabeur, H.; Zribi, A.; Makni, J.; Rebai, A.; Abdelhedi, R.; Bouaziz, M. Detection of Chemlali Extra-Virgin Olive Oil Adulteration Mixed with Soybean Oil, Corn Oil, and Sunflower Oil by Using GC and HPLC. J. Agric. Food Chem. 2014, 62 (21), 4893–4904. https://doi.org/10.1021/jf500571n.
34. Salghi, R.; Armbruster, W.; Schwack, W. Detection of Argan Oil Adulteration with Vegetable Oils by High-Performance Liquid Chromatography–Evaporative Light Scattering Detection. Food Chemistry 2014; 153: 387–392. https://doi.org/10.1016/j.foodchem.2013.12.084.
35. Meng, X.; Yin, C.; Yuan, L.; Zhang, Y.; Ju, Y.; Xin, K.; Chen, W.; Lv, K.; Hu, L. Rapid Detection of Adulteration of Olive Oil with Soybean Oil Combined with Chemometrics by Fourier Transform Infrared, Visible-near-Infrared and Excitation-Emission Matrix Fluorescence Spectroscopy: A Comparative Study. Food Chemistry 2023; 405: 134828. https://doi.org/10.1016/j.foodchem.2022.134828.
36. Yuan, Z. Detection of Flaxseed Oil Multiple Adulteration by Near-Infrared Spectroscopy and Nonlinear One Class Partial Least Squares Discriminant Analysis. Food Science and Technology. 2020; 125: 109247. https://doi.org/10.1016/j.lwt.2020.109247.
37. Lengkey, L. C. E. CH.; Budiastra, I. W.; Seminar, K. B.; Purwoko, B. S. Model Pendugaan Kandungan Air, Lemak Dan Asam Lemak Bebas Pada Tiga Provenan Biji Jarak Pagar (Jatropha Curcas l.) Menggunakan Spektroskopi Inframerah Dekat Dengan Metode Partial Least Square (PLS). Jurnal Littri 2013; 19 (4): 203–211.
38. Yang, R.; Liu, R.; Kexin, X. Detection of Adulterated Milk Using Two-Dimensional Correlation Spectroscopy Combined with Multi-Way Partial Least Squares. Food Bioscience 2013; 2: 61–67. https://doi.org/10.1016/j.fbio.2013.04.005.
39. Padmavathi, Y.; Anjali, A.; Babu, N. R.; Kumar, P. R. Development and Validation of New FTIR Method for Quantitative Analysis of Gliclazide in Bulk and Pharmaceutical Dosage Forms. Research J. Pharm. and Tech. 2017; 10 (3): 377–382.
40. Rana, R.; Kumar, A.; Bhatia, R. Impact of Infra Red Spectroscopy in Quantitative Estimation: An Update. Asian Journal of Pharmaceutical Analysis. 2020; 10 (4): 218–230. https://doi.org/10.5958/2231-5675.2020.00040.X.
41. A, V.; V, B.; R, K.; P, M.; Nadimuthu, N. FTIR Spectrum Characteristic of Treated Spent Oil with Fungi. Research Journal of Science and Technology. 2014; 6 (4): 185–193.
42. Fatmarahmi, D. C.; Susidarti, R. A.; Swasono, R. T.; Rohman, A. Identification and Quantification of Metamizole in Traditional Herbal Medicines Using Spectroscopy FTIR-ATR Combined with Chemometrics. RJPT 2021; 14 (8): 4413–4419. https://doi.org/10.52711/0974-360X.2021.00766.
43. S, G.; Firdous, J.; A, S.; B, V.; T, K.; V, B.; P, A.; P, M. Antibacterial Action of Pedilanthus Tithymaloides Leaves Extract and FTIR Phytochemical Finger Printing. RJPT. 2021, 2021–2025. https://doi.org/10.52711/0974-360X.2021.00358.
44. Sarungallo, Z. L.; Hariyadi, P.; Andarwulan, A.; Purnomo, E. H. Effect of Heat Treatment Prior to Extraction on the Yield and Quality of Red Fruit (Pandanus Conoideus) Oil. Food Res. 2020; 4 (3): 659–665. https://doi.org/10.26656/fr.2017.4(3).281.
45. Rohman, A.; Irnawati; Riswanto, F. D. O. Kemometrika, 1st ed.; Gadjah Mada University Press: Yogyakarta - Indonesia, 2021.
46. Biancolillo, A.; Marini, F. Chemometric Methods for Spectroscopy-Based Pharmaceutical Analysis. Front. Chem. 2018; 6: 576. https://doi.org/10.3389/fchem.2018.00576.
47. Pal, S.; Pal, S.; Bhattacharjee, K. A Pca Approach for Comparing Performances of Major Indian Banks during 2004–05 to 2013–14. Asian Jour. Manag. 2017; 8 (3): 442. https://doi.org/10.5958/2321-5763.2017.00071.3.
48. Dash, P.; Prusty, P. K.; Rout, S. P. Assessment of Pulsating Organic and Nutrient Load in a River System, Using Multivariate Statistical Techniques: A Case Study of the Mahanadi River in Odisha, India. Asian J. Research Chem. 2014; 7 (11): 940–949.
49. Deepa, N.; Ravi, C. Dimension Reduction Using Principal Component Analysis for Pharmaceutical Domain. Rese. Jour. of Pharm. and Technol. 2016; 9 (8): 1169. https://doi.org/10.5958/0974-360X.2016.00223.7.
50. Hourant, P.; Baeten, V.; Morales, M. T.; Meurens, M.; Naparicio, A. Oil and Fat Classification by Selected Bands of Near-Infrared Spectroscopy. Applied Spectroscopy. 2000; 54 (8): 1168–1174. https://doi.org/0003-7028 / 00 / 5408-1168$2.00 / 0.
51. Stuart, B. H. Infrared Spectroscopy: Fundamentals and Applications; John Wiley and Sons, Ltd, 2004.
52. Liu, Y.; Sun, L.; Du, C.; Wang, X. Near-Infrared Prediction of Edible Oil Frying Times Based on Bayesian Ridge Regression. Optik 2020. https://doi.org/10.1016/j.ijleo.2020.164950.
53. Guillen, M. D.; Cabo, N. Some of the Most Significant Changes in the Fourier Transform Infrared Spectra of Edible Oils under Oxidative Conditions. J. Sci. Food Agric. 2000; 80 (14): 2028–2036. https://doi.org/10.1002/1097-0010(200011)80:14<2028::AID-JSFA713>3.0.CO;2-4.
54. Patel, A.; Gohel, M.; Soni, T. Partial Least Square Analysis and Mixture Design for the Study of the Influence of Composition Variables on Nanoemulsions as Drug Carriers. Research J. Pharm. and Tech. 2014; 7 (12): 1446–1455.
55. Singh, V. D.; Singh, V. K.; Daharwal, S. J. The Comparison of Two Chemometric Assisted UV Spectrophotometric Techniques with High-Performance Liquid Chromatography Methods for Simultaneous Determination of Three Antiemetic Drugs Used in Chemotherapy Induced Nausea and Vomiting. RJPT 2021; 14 (9): 4815–4824. https://doi.org/10.52711/0974-360X.2021.00837.
56. Agriopoulou, S.; Tarapoulouzi, M.; Bedine Boat, M. A.; Rébufa, C.; Dupuy, N.; Theocharis, C. R.; Varzakas, T.; Roussos, S.; Artaud, J. Authentication and Chemometric Discrimination of Six Greek PDO Table Olive Varieties through Morphological Characteristics of Their Stones. Foods 2021; 10 (8): 1829. https://doi.org/10.3390/foods10081829.
57. Setyaningrum, D. L.; Riyanto, S.; Rohman, A. Analysis of Corn and Soybean Oils in Red Fruit Oil Using FTIR Spectroscopy in Combination with Partial Least Square. International Food Research Journal 2013; 20 (4): 1977–1981.