Author(s):
A. Alaoui, S. Dahbi, H. Lachguer, N. Sahri, E. El herradi, S. Amghar
Email(s):
asmae98@gmail.com
DOI:
10.52711/0974-360X.2025.00174
Address:
A. Alaoui1, S. Dahbi2, H. Lachguer3, N. Sahri1, E. El herradi1, S. Amghar2.
1Physio-Chemical Laboratory of Inorganic and Organic Materials (LPCMIO), Materials Science Center (MSC), Ecole Normale Superieure Rabat, Mohammed V University in Rabat, Morocco.
2Research Team: Lombricidae, Improving Soil Productivity and Environment (LAPSE), Center Water, Natural Resources, Environment and Sustainable Development (CERNE-2D), Ecole Normale Supérieure Rabat, Mohammed V University in Rabat, Morocco.
3Soludia Maghreb Pharmaceutical Laboratory Angle Avenue de Fès et de la résistance 11150-Sale Morocco.
*Corresponding Author
Published In:
Volume - 18,
Issue - 3,
Year - 2025
ABSTRACT:
Essential oils, well-known for their many virtues, were already gaining attention for their potential health benefits before COVID-19, then, significantly rose during the pandemic. However, alarms regarding their safety use persist. Morocco, one of the leading countries producing essential oils and aromatic extracts, has a great tradition of distilling aromatic plants. Among the most popular essential oils on the market are Cinnamon, Eucalyptus Lavender, Lemon, and Tea tree. In the present study, we evaluated the potential antimicrobial activity of these five commercial essential oils against three well-known reference pathogens bacterial strains, using Disc-diffusion, Minimum inhibitory, and bactericidal concentrations tests. Subsequently, we investigated their chemical composition throughout the GC-MS. Furthermore, recognizing the potential risks associated with heavy metal contamination in essential oils, we examined the presence of (Cu, Pb, Zn, and Hg) in accordance with European Pharmacopoeia standards. Results indicated strong antimicrobial activity in all Essential oils except Lemon, with Cinnamon showing the highest efficacy. Major compounds identified were Cinnamaldehyde (82.26%), Eucalyptol (86.25%), Linalool, Linalyl isobutyrate (43.17% - 40.18%), Limonene (59.55%), and Terpinene-4-ol (40.28%). Heavy metal levels were low, meeting safety standards. In conclusion, this study highlights the safety and quality of five Moroccan essential oils, offering promising therapeutic applications.
Cite this article:
A. Alaoui, S. Dahbi, H. Lachguer, N. Sahri, E. El herradi, S. Amghar. Characterization and quality control of five essential oils according to the European Pharmacopeia and Antimicrobial activity. Research Journal of Pharmacy and Technology. 2025;18(3):1200-8. doi: 10.52711/0974-360X.2025.00174
Cite(Electronic):
A. Alaoui, S. Dahbi, H. Lachguer, N. Sahri, E. El herradi, S. Amghar. Characterization and quality control of five essential oils according to the European Pharmacopeia and Antimicrobial activity. Research Journal of Pharmacy and Technology. 2025;18(3):1200-8. doi: 10.52711/0974-360X.2025.00174 Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-3-35
REFERENCES:
1. Vaishali Kulkarni, Nayana Jain, Rutuja Shinde, Swarda Kamble. Formulation and Evaluation of Antimicrobial Gels using Essential Oils. Asian Journal of Pharmaceutical Research. 2024; 14(2): 129-2. doi: 10.52711/2231-5691.2024.00022
2. Aditya Singh, Ansari VA, Md. Faheem Haider, Juber Akhtar, Farogh Ahsan. Essential oils used in Modified Drug Delivery and its formulation of Liposomes for Topical Purpose. Res. J. Pharmacology and Pharmacodynamics. 2020; 12(1): 34-38. doi: 10.5958/2321-5836.2020.00008.7
3. E. Werker, E. Putievsky, et U. Ravid, The Essential Oils and Glandular Hairs in Different Chemotypes of Origanum vulgare L. », Annals of Botany, vol. 55, no 6, 793‑801, 1985.
4. Monika Gupta, Aditi Gupta, Sudhakar Gupta. Insecticidal Activity of Essential Oils Obtained from Piper nigrum and Psoralea corylifolia Seeds against Agricultural Pests. Asian J. Research Chem. 2013; 6(4): April 360-363.
5. K. Chan, «Some aspects of toxic contaminants in herbal medicines», Chemosphere, vol. 52, no 9, 1361‑1371, sept. 2003, doi: 10.1016/S0045-6535(03)00471-5.
6. R. M. Harrison et M. B. Chirgawi, « The assessment of air and soil as contributors of some trace metals to vegetable plants. III. Experiments with field-grown plants », Sci Total Environ, vol. 83, no 1‑2, p. 47‑62, juill. 1989, doi: 10.1016/0048-9697(89)90005-3.
7. L. Järup, « Hazards of heavy metal contamination », Br Med Bull, vol. 68, p. 167‑182, 2003, doi: 10.1093/bmb/ldg032.
8. World Health Organization, Guidelines for the assessment of herbal medicines, World Health Organization, 1991.
9. Damini D, Sukriti P, C.Subathra Devi, E. Selvarajan, V. Suganthi, V. Mohanasrinivasan. Removal of Heavy Metals from Leather Industry Effluent Using Saccharomyces sp In a Packed Bed Reactor. Research J. Engineering and Tech. 2013; 4(2): April-June, 53-56.
10. M. M. Al-Alawi et K. L. Mandiwana, « The use of Aleppo pine needles as a bio-monitor of heavy metals in the atmosphere », J Hazard Mater, vol. 148, no 1‑2, p. 43‑46, sept. 2007, doi: 10.1016/j.jhazmat.2007.02.001.
11. R. Djingova, P. Kovacheva, G. Wagner, et B. Markert, « Distribution of platinum group elements and other traffic related elements among different plants along some highways in Germany », Science of The Total Environment, vol. 308, no 1, p. 235‑246, juin 2003, doi: 10.1016/S0048-9697(02)00677-0.
12. European Pharmacopoeia, 5th ed. Strasbourg: Council of Europe, 2005.
13. Ph. Eur, 2020: 50300.
14. European Pharmacopoeia, 20427, 2014.pdf.
15. European Pharmacopoeia, 0390, 2021.
16. European Pharmacopoeia, 0620, 2022.
17. European Pharmacopoeia, 1338, 2018.pdf.
18. S. Bouhdid, N. Skali-Senhaji, M. Idaomar, et A. Zhiri, « Antibacterial and antioxidant activities of Origanum compactum essential oil », African Journal of Biotechnology, vol. 7, p. 1563‑1570, mai 2008.
19. Serene Adak, Dipesh Chakraborty, Himangshu S. Maji, Satakshi Basu, Pradip Roy, Sutanuka Mitra, Nabanita Mukherjee, Samarendra Barik, Arunava Goswami. Comparison of the antimicrobial activity of the phyto-constituents obtained from the stem bark and leaf extracts of Phyllanthus emblica L. against different strains of Staphylococcus aureus and Salmonella typhi. Res. J. Pharmacology and Pharmacodynamics. 2018; 10(2): 53-60. doi: 10.5958/2321-5836.2018.00009.5
20. M. Balouiri, M. Sadiki, et S. K. Ibnsouda, « Methods for in vitro evaluating antimicrobial activity: A review », Journal of Pharmaceutical Analysis, vol. 6, no 2, p. 71‑79, avr. 2016, doi: 10.1016/j.jpha.2015.11.005.
21. H. Sbayou, N. Oubrim, B. Bouchrif, B. Ababou, K. Boukachabine, et S. Amghar, « Chemical Composition and Antibacterial Activity of Essential Oil of Origanum Compactum Against Foodborne Bacteria », International Journal of Engineering Research, vol. 3, no 1, 2014.
22. J. Khribch, S. Nassik, M. E. Houadfi, S. Zrira, et M. Oukessou, « Activité antibactérienne de l’huile essentielle d’origan et du carvacrol sur des souches d’Escherichia coli d’origine aviaire », 2018.
23. Kandikonda Maneesh, Kanakam Vijayabhaskar, Heena Firdouse, Pingali Srinivasa Rao, Mothukuri Prajwitha, Sreeramula swetha. Evaluation of Antimicrobial of P. vesicularis, Streptococcus faecalis, Aeromonas hydrophilia, Salmonela typhae, Stphylococcus cohni, Serratia ficaria and E. coli. of crude and n-butanol fraction fruit latex of Carica papaya L. (Caricaceae). Asian Journal of Pharmaceutical Research. 2021; 11(2):92-4. doi: 10.52711/2231-5691.2021.00017
24. Liasi, S. A., Azmi, T. I., Hassan, M. D., Shuhaimi, M., Rosfarizan, M., et Ariff, A. B., «Antimicrobial activity and antibiotic sensitivity of three isolates of lactic acid bacteria from fermented fish product, Budu», MJM, juin 2009, doi: 10.21161/mjm.15008.
25. D. W. Wanja, P. G. Mbuthia, R. M. Waruiru, L. C. Bebora, H. A. Ngowi, et P. N. Nyaga, « Antibiotic and Disinfectant Susceptibility Patterns of Bacteria Isolated from Farmed Fish in Kirinyaga County, Kenya», International Journal of Microbiology, vol. 2020, p. 1‑8, juill. 2020, doi: 10.1155/2020/8897338.
26. H. Sakkas, P. Gousia, V. Economou, V. Sakkas, S. Petsios, et C. Papadopoulou, « In vitro antimicrobial activity of five essential oils on multi-drug resistant Gram-negative clinical isolates », J Intercult Ethnopharmacol, vol. 5, no 3, p. 212, 2016, doi: 10.5455/jice.20160331064446.
27. G. A. Pankey et L. D. Sabath, « Clinical Relevance of Bacteriostatic versus Bactericidal Mechanisms of Action in the Treatment of Gram‐Positive Bacterial Infections », CLIN INFECT DIS, vol. 38, no 6, p. 864‑870, mars 2004, doi: 10.1086/381972.
28. Chanchal Kumari, P. Meenatchi. GC-MS analysis of phyto-constituents and antimicrobial activity of hexane extract of Lanatana camara Linn. Res. J. Pharmacognosy and Phytochem. 2017; 9(2): 115-120. doi: 10.5958/0975-4385.2017.00021.8
29. « European Pharmacopoeia, 20206, 2008.pdf ».
30. « European Pharmacopoeia, 20207, 2018.pdf ».
31. 31.S.K Bais, A.V. Chandewar , D.W. Wargantiwar, S.M. Charjan. Comparative Evaluation of Heavy Metals in Marketed Haematinic Herbal Formulations by Atomic Absorption Spectroscopy. Asian J. Pharm. Ana. 4(1): Jan.-Mar. 2014; Page 11-16
32. G.V. Krishna Mohan, G. Jayaprakash, K. Padavathi Devi. Assessment of Heavy Metal Studies in the Eggplant (Solanum melongena) Grown in Municipal Solid Waste (MSW) Compost Applied Soil. Asian J. Research Chem. 2011; 4(10): Oct., 1632-1634.
33. P. Hili, C. S. Evans, et R. G. Veness, « Antimicrobial action of essential oils : the effect of dimethylsulphoxide on the activity of cinnamon oil », Letters in Applied Microbiology, vol. 24, no 4, p. 269‑275, avr. 1997, doi: 10.1046/j.1472-765X.1997.00073.x.
34. S. C. Chao, D. G. Young, et C. J. Oberg, « Screening for Inhibitory Activity of Essential Oils on Selected Bacteria, Fungi and Viruses », Journal of Essential Oil Research, vol. 12, no 5, p. 639‑649, sept. 2000, doi: 10.1080/10412905.2000.9712177.
35. M. Raeisi, H. Tajik, A. Yarahmadi, et S. Sanginabadi, « Antimicrobial Effect of Cinnamon Essential Oil Against Escherichia Coli and Staphylococcus aureus », Health Scope, vol. 4, no 4, nov. 2015, doi: 10.17795/jhealthscope-21808.
36. A. Kumar et al., « Antibacterial activity of green tea (Camellia sinensis) extracts against various bacteria isolated from environmental sources », Recent Research in Science and Technology. 2012.
37. A. Fahmi et D. S. Hutauruk, « Antimicrobial Activity Test of Black Tea Ethanol Extract (Camellia sinensis) against Pseudomonas aeruginosa », IJGOIA, vol. 1, no 4, p. 229‑235, dec. 2022, doi: 10.56225/ijgoia.v1i4.101.
38. L. Espina, M. Somolinos, S. Lorán, P. Conchello, D. García, et R. Pagán, « Chemical composition of commercial citrus fruit essential oils and evaluation of their antimicrobial activity acting alone or in combined processes », Food Control, vol. 22, no 6, p. 896‑902, juin 2011, doi: 10.1016/j.foodcont.2010.11.021.
39. EricW. C. Chan, P. Tie, E. Soh, et Y. Law, « Antioxidant and antibacterial properties of green, black, and herbal teas of Camellia sinensis », Phcog Res, vol. 3, no 4, p. 266, 2011, doi: 10.4103/0974-8490.89748.
40. M. Sienkiewicz, M. Lysakowska, J. Ciecwierz, P. Denys, et E. Kowalczyk, « Antibacterial Activity of Thyme and Lavender Essential Oils », MC, vol. 7, no 6, p. 674‑689, nov. 2011, doi: 10.2174/157340611797928488.
41. A. Ben Hsouna, N. Ben Halima, S. Smaoui, et N. Hamdi, « Citrus lemon essential oil: chemical composition, antioxidant and antimicrobial activities with its preservative effect against Listeria monocytogenes inoculated in minced beef meat », Lipids Health Dis, vol. 16, no 1, p. 146, dec. 2017, doi: 10.1186/s12944-017-0487-5.
42. M. Lis-Balchin, S. G. Deans, et E. Eaglesham, « Relationship between bioactivity and chemical composition of commercial essential oils », Flavour Fragr. J., vol. 13, no 2, p. 98‑104, mars 1998, doi: 10.1002/(SICI)1099-1026(199803/04)13:2<98:AID-FFJ705>3.0.CO;2-B.
43. Sanket. J. Kapse, Nishigandha. D. Naikawadi, Mayuri. C. More, Prakash. D. Jadhav, Vivekkumar Redasani. A overview on Pharmaceutical Application of Tree Tea Oil. Research Journal of Pharmacognosy and Phytochemistry. 2024; 16(2): 125-9. doi: 10.52711/0975-4385.2024.00024.
44. N. G. Vasconcelos, J. Croda, et S. Simionatto, «Antibacterial mechanisms of cinnamon and its constituents: A review», Microbial Pathogenesis, vol. 120, p. 198‑203, juill. 2018, doi: 10.1016/j.micpath.2018.04.036.
45. B. Imelouane, A. Elbachiri, M. Ankit, H. Benzeid, et K. Khedid, « Physico-Chemical Compositions and Antimicrobial Activity of Essential Oil of Eastern Moroccan Lavandula dentata », Int. J. Agric. Biol., vol. 11, no 2, 2009.
46. Muhammad Hamza Ashfaq, Amna Siddique, Sammia Shahid. Antioxidant Activity of Cinnamon zeylanicum: (A Review). Asian Journal of Pharmaceutical Research. 2021; 11(2): 106-6. doi: 10.52711/2231-5691.2021.00021