Author(s):
Purwaniati Purwaniati, Muhammad Insanu, Maria Immaculata Iwo, Rahmana Emran Kartasasmita
Email(s):
maria1428@itb.ac.id
DOI:
10.52711/0974-360X.2025.00166
Address:
Purwaniati Purwaniati1,4, Muhammad Insanu2, Maria Immaculata Iwo3*, Rahmana Emran Kartasasmita1
1Departement of Pharmaceutical Chemistry, School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia.
2Departement of Pharmaceutical Biology, School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia
3Departement of Pharmacology and Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia.
4Departement of Pharmaceutical Analysis and Medicinal Chemistry, Pharmacy Faculty, Universitas Bhakti Kencana, Bandung, Indonesia.
*Corresponding Author
Published In:
Volume - 18,
Issue - 3,
Year - 2025
ABSTRACT:
Ginggiang (Leea aequata L.) leaf is widely recognized for its traditional applications in wound healing and palm sap preservation. Therefore, this research aimed to explore the potential of ginggiang leaf as a preservative or antiseptic agent, focusing on evaluating its antimicrobial properties. Flavonoids, tannins, saponins, quinones, terpenoids, and steroids were detected in the leaf's ethanol extract (EE) and aqueous extract (AE). In vitro assessments included the evaluation of AE and EE, as well as ethyl acetate, n-hexane, and 20%-methanol fraction of EE, to test inhibitory effects on the microbial test. The results showed that EE and AE, including ethyl acetate and 20%-methanol fraction, provided antimicrobial activity against several foodborne pathogens and skin disease microbes. However, only EE showed a significant antimicrobial effect against a spectrum of test microbes and the most potent antimicrobial activity, including Staphylococcus aureus with MIC 66.67±18.85 µg/mL, MRSA (160.00±0.00µg/mL), Staphylococcus epidermidis (168.0±102.14µg/mL), Propionibacterium acnes (426.67±122.67), Bacillus subtilis (426.67±150.85µg/mL), Pseudomonas aeruginosa (133.33±37.71 µg/mL), Escherichia coli (426.67±150.85µg/mL), Candida albicans (53.33±18.85µg/mL), and Aspergillus flavus (2560.00±0.00µg/mL). Based on this research, it can be concluded that EE from ginggiang leaf showed promising potential for further development as a preservative and antiseptic.
Cite this article:
Purwaniati Purwaniati, Muhammad Insanu, Maria Immaculata Iwo, Rahmana Emran Kartasasmita. The Antimicrobial activity of Ginggiang (Leea aequata L.) leaf extract as Preservative and Antiseptic. Research Journal Pharmacy and Technology. 2025;18(3):1154-0. doi: 10.52711/0974-360X.2025.00166
Cite(Electronic):
Purwaniati Purwaniati, Muhammad Insanu, Maria Immaculata Iwo, Rahmana Emran Kartasasmita. The Antimicrobial activity of Ginggiang (Leea aequata L.) leaf extract as Preservative and Antiseptic. Research Journal Pharmacy and Technology. 2025;18(3):1154-0. doi: 10.52711/0974-360X.2025.00166 Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-3-27
REFERENCES:
1. Sandeep DS. Nayak P. Jose J. Mendoca RR. Sumana DR. Formulation and evaluation of antibacterial herbal gels of Murraya koenigii leaves extract. Research Journal of Pharmacy and Technology. 2017; 10, 1798–1801. http://dx.doi.org/10.5958/0974-360X.2017.00317.1
2. Sundar S. Padmalatha K. Apsana SK. Himaja P. Nandini V. Sirisha D. Antibacterial and antifungal activity of Carica papaya l seed extracts. Research Journal of Pharmacy and Technology. 2021; 14, 1085–1090. https://doi.org/10.5958/0974-360X.2021.00195.5
3. Janani M. & Ahamed MIN. A review on traditional uses, phytochemistry and pharmacological activities of Acacia nilotica (Indian babul). International Journal of Biomedical Nanoscience and Nanotechnology. 2020; 4, 148. doi: 10.1504/ijbnn.2020.116318
4. Rahim A. Mostofa Mg. Sadik MG. Rahman MAA. Khalil MI. Tsukahara T. Nakagawa-Goto K. Alam MK. The anticancer activity of two glycosides from the leaves of Leea aequata L. Natural Product Research. 2021; 35, 5867–5871. https://doi.org/10.1080/14786419.2020.1798661
5. Mostofa MG. Reza ASMA. Khan Z. Munira MS. The Apoptosis-inducing Antiproliferative Activity and Quantitative Phytochemical Profiling of Polyphenol-rich Part of Leea Aequata L. Leaves. Heliyon. 2021; 10. https://doi.org/10.1016/j.heliyon.2023.e23400
6. Fakhrudin N. Mufinnah FF. Husni MF. Wardana AE. Wulandari EI. Putra AR. Screening of selected indonesian plants for antiplatelet activity. Biodiversitas. 2021; 22:, 5268–5273. DOI: 10.13057/biodiv/d221205
7. Jain SK. Manikpuri N. Kujur M. Antibacterial activity of seeds, stems, and roots of Leea aequata. Biosciences Biotechnology Research Asia. 2010; 7: 453–456. https://www.biotech-asia.org/?p=9752
8. Tun NL. Hu DB. Xia MY. Zhang DD. Yang J. Oo TN. Wang YH. Yang XF. Chemical Constituents from Ethanoic Extracts of the Aerial Parts of Leea aequata L., a Traditional Folk Medicine of Myanmar. Natural Products Bioprospect. 2019; 9, 243–249. https://doi.org/10.1007/s13659-019-0209-y
9. Ginting N. Suwarso E. Rumapea DV. Nerdy N. Relaxation activity of tetanus (Leea aequata L.) leaf ethanolic extract on Guinea pig isolated trachea. Asian Journal of Pharmaceutical and Clinical Research. 2018; 11: 24–27. http://dx.doi.org/10.22159/ajpcr.2018.v11s1.26557
10. Bangun SR. Karo MB. Gulo BIC. Siburian AP. Manurung F. Sihotang LL. Perawatan Luka Penderita Kusta Dengan Daun Tetanus (Leea Aequata L) Pengobatan Tradisonal Suku Karo. Jurnal Kreativitas Pengabdian kepada Masyarakat. 2021; 4: 1103–1108. https://doi.org/10.33024/jkpm.v4i5.4212
11. Hossain F. Mostofa MG. Alam AK. Traditional uses and pharmacological activities of the genus leea and its phytochemicals: A review. Heliyon. 2021; 7, e06222–e06222. https://doi.org/10.1016/j.heliyon.2021.e06222
12. Kabiraz MP. Majumdar PR. Mahmud MMC. Bhowmik S. Ali A. Conventional and advanced detection techniques of foodborne pathogens: A comprehensive review. Heliyon. 2023; 9, e15482. https://doi.org/10.1016/j.heliyon.2023.e15482
13. Bintsis T. Foodborne pathogens. AIMS Microbiology. 2017; 3, 529–563. https://doi.org/10.3934/microbiol.2017.3.529
14. Mostafa AA. Al-Askar AA. Almaary KS. Dawoud TM. Sholkamy EN. Bakri MM. Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi Journal of Biological Sciences. 2018; 25, 361–366. https://doi.org/10.1016/j.sjbs.2017.02.004
15. Logan NA. Bacillus and relatives in foodborne illness. Journal of Applied Microbiology. 2012;112, 417–429. https://doi.org/10.1111/j.1365-2672.2011.05204.x
16. Rajkowska K. Kunicka-Styczyńska A. Typing and virulence factors of food-borne Candida spp. isolates. International Journal of Food Microbiology. 2018; 279: 57–63. https://doi.org/10.1016/j.ijfoodmicro.2018.05.002
17. Paterson RRM. Lima N. Filamentous fungal human pathogens from food emphasizing aspergillus, fusarium, and mucor. Microorganisms. 2017; 5, 1–9. https://doi.org/10.3390/microorganisms5030044
18. Wei PW. Song CR. Wang X. Chen M. Yang YX. Wang C. Hu ZQ. Liu HM. Wang B. A potential milk preservative—-Phormicin C-NS, sorbic acid-modified housefly antimicrobial peptide, inhibits Candida albicans hypha and biofilm formation. LWT. 2022; 168, 113883. https://doi.org/10.1016/j.lwt.2022.113883
19. Mollerup S. Friis-Nielsen J., Vinner L. Hansen TA, Richter, SR. Fridholm H. Herrera JAR. Lund O. Brunak S. Izazurgaza JMG. Mourier T. Nielsen LP. Hansen AJ. Propionibacterium acnes: Disease-causing agent or common contaminant? detection in diverse patient samples by next-generation sequencing. Journal of Clinical Microbiology. 2016; 54, 980–987. https://doi.org/10.1128/jcm.02723-15
20. Brown MM. Horswill AR. Staphylococcus epidermidis-Skin friend or foe? PLoS Pathogens. 2020; 16, 1–6. https://doi.org/10.1371/journal.ppat.1009026
21. Farnsworth NR. Biological and Phytochemical Screening of Plants. Journal of Pharmaceutical Sciences. 1966; 151, 874–875. https://doi.org/10.1002/jps.2600550302
22. Singh A. Srivastava KC. Banerjee A. Wadhwa N. Phytochemical analysis of peel of Amorphophallus paeoniifolius. International Journal of Pharma Bio Sciences. 2013; 4. doi/full/10.5555/20133392296
23. Iqbal E. Salim KA. Lim LBL. Phytochemical screening, total phenolics, and antioxidant activities of bark and leaf extracts of Goniothalamus velutinus (Airy Shaw) from Brunei Darussalam. Journal of King Saud University - Science. 2015; 27: 224–232. https://doi.org/10.1016/j.jksus.2015.02.003
24. Kilonzo M. Munisi D. Antimicrobial activities and phytochemical analysis of Harrisonia abyssinica (Oliv) and Vepris simplicifolia (Verd) extracts used as traditional medicine in Tanzania. Saudi Journal of Biological Sciences. 2021; 28, 7481–7485. https://doi.org/10.1016/j.sjbs.2021.08.041
25. CLSI. Methods for dilution antimicrobials susceptibility test for bacteria that grow aerobically: Approved standard-ninth edition. vol. 29 (2012).
26. CLSI. Method for Antifungal Disk Diffusion Susceptibility Testing of Yeasts; Approved Guideline. NCCLS Document MA44-A. N vol. 24 (2004).
27. CLSI. CLSI Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts ; Approved Standard — Second Edition; CLSI document M27-A2. Clinical and Laboratory Standards Institute, Wayne. vol. 22 (2002).
28. Al Yousef SA. In vitro bactericidal and imipenem synergistic effect of nano-silver against multiple drug-resistant Pseudomonas aeruginosa. Journal of King Saud University - Sciences. 2022; 34, 101706. https://doi.org/10.1016/j.jksus.2021.101706
29. Islam S. Phytochemical Screening and Investigation of in-vitro Antioxidant and Antibacterial Activity of Leea aequata leaf extract. 2017. https://dspace.bracu.ac.bd/xmlui/bitstream/handle/10361/9357/ID-13146052_PHR.pdf?sequence=1&isAllowed=y
30. Shamsudin NF. Ahmed QU. Mahmood S. Shah SAA. Khatib A. Mukhtar S. Alsharif MA. Parveen H. Zakaria ZA. Antibacterial Effects of Flavonoids and Their Structure-Activity Relationship Study: A Comparative Interpretation. Molecules. 2022; 27. https://doi.org/10.3390/molecules27041149
31. Akiyama H. Fujii K. Yamasaki O. Oono T. Iwatsuki K. Antibacterial action of several tannins against Staphylococcus aureus. The Journal of Antimicrobial Chemotherapy. 2001;48, 487–491. https://doi.org/10.1093/jac/48.4.487
32. Vu TT. Kim H. Tran VK. Vu HD. Hoang TX. Han JW. Choi YH. Jang KS. Choi GJ. Kim JC. Antibacterial activity of tannins isolated from Sapium baccatum extract and use for control of tomato bacterial wilt. PLoS One. 2017; 12, 1–12. https://doi.org/10.1371/journal.pone.0181499
33. Tagousop CN. Tamokou JdeD. Kengne IC. Ngnokam D. Voutquenne-Nazabadioko L. Antimicrobial activities of saponins from Melanthera elliptica and their synergistic effects with antibiotics against pathogenic phenotypes. Chemistry Central Journal. 2018; 12: 1–9. doi: 10.1186/s13065-018-0466-6