ABSTRACT:
The epidermal growth factor receptor (EGFR) has been identified as a clinically relevant target for the treatment of advanced non-small-cell lung cancer patients (NSCLC). EGFR-directed tyrosine kinase inhibitors (TKIs) have demonstrated efficacy in patients with advanced NSCLC. The drugs Erlotinib and Osimertinib are commonly prescribed for the NSCLC treatment so docking studies were carried out on the two X-ray crystallographic Protein Data Bank (PDB) IDs, 6LUD and 1M17, with co-crystallized molecules Osimertinib and Erlotinib, respectively. Similar to indole scaffold present in Osimertinib, the series was designed with substitutions at third position on indole with different aldehydes and secondary amines to form mannich bases. On docking of the designed series in both active sites, IM_23, IM_24, IM_25, IM_44, IM_45, IM_50, IM_52, IM_57, and IM_63 demonstrated interactions with active site residues in both the pdb structures. In silico ADME studies were performed to judge the drug likeliness. The analogs with favourable computational results were synthesized utilizing green, benign method and characterized. The synthesized analogs were assessed for anti-proliferative properties on the human lung cancer A549 cell line in vitro. IM_23 and IM_45 exhibited prominent activity. Correlation of docking and screening results indicated that electron-donating substituents on phenyl ring of the analogues showcased more interactions with crucial residues in active site such as Met 793 with better activity profile than electron-donating groups. In conclusion, some analogues exhibit potential as EGFR inhibitors to target non-small cell lung cancer. Further, the findings may offer perceptions into the possible EGFR binding properties, which may aid in the optimization and further development of more promising analogs.
Cite this article:
Sonal Pathak, Archana S. Gurjar. Molecular Docking, Synthesis and Pharmacological Screening of Indole-3-Mannich bases as EGFR Kinase Inhibitors to Combat non-small-cell Lung Cancer. Research Journal Pharmacy and Technology. 2025;18(3):1147-3. doi: 10.52711/0974-360X.2025.00165
Cite(Electronic):
Sonal Pathak, Archana S. Gurjar. Molecular Docking, Synthesis and Pharmacological Screening of Indole-3-Mannich bases as EGFR Kinase Inhibitors to Combat non-small-cell Lung Cancer. Research Journal Pharmacy and Technology. 2025;18(3):1147-3. doi: 10.52711/0974-360X.2025.00165 Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-3-26
7. REFERENCES:
1. Zappa, C.; Mousa, S. A. Non-Small Cell Lung Cancer: Current Treatment and Future Advances. Transl. Lung Cancer Res. 2016; 5 (3): 288–300. https://doi.org/10.21037/tlcr.2016.06.07.
2. Swiatnicki, M. R.; Rennhack, J. P.; Ortiz, M. M. O.; Hollern, D. P.; Perry, A. V.; Kubiak, R.; Riveria Riveria, S. M.; OReilly, S.; Andrechek, E. R. Elevated Phosphorylation of EGFR in NSCLC Due to Mutations in PTPRH. PLoS Genet. 2022; 18 (9): 1–20. https://doi.org/10.1371/journal.pgen.1010362.
3. Id, M. Z. T.; Koivu, M.; Elenius, K.; Johnson, M. S. Structural Characterization of EGFR Exon 19 Deletion Mutation Using Molecular Dynamics Simulation. 2019, 1–23.
4. Pirker, R. What Is the Best Strategy for Targeting EGF Receptors in Non-Small-Cell Lung Cancer? Futur. Oncol. 2015; 11 (1): 153–167. https://doi.org/10.2217/fon.14.178.
5. Pan, J.; Cai, X.; Cao, Z.; Pan, J.; Zheng, H. Osimertinib in the Treatment of EGFR Mutation-Positive Advanced Non-Small Cell Lung Cancer : A Meta-Analysis. 2023; 8–16. https://doi.org/10.1159/000527321.
6. M. Sravani, N. Duganath, Deepak Reddy Gade, S. R. C. H. Insilico Analysis and Docking of Imatinib Derivatives Targeting BCR-ABL Oncoprotein for Chronic Myeloid Leukemia. Asian J. Res. Chem.
7. R. Kucharczuk, DNP, CRNP, C.; Ganetsky, PharmD, BCOP, A.; Michael Vozniak, PharmD, BCOP, J. Drug-Drug Interactions, Safety, and Pharmacokinetics of EGFR Tyrosine Kinase Inhibitors for the Treatment of Non–Small Cell Lung Cancer. J. Adv. Pract. Oncol. 2018; 9 (2): 189–200. https://doi.org/10.6004/jadpro.2018.9.2.5.
8. Tan, C.; Kumarakulasinghe, N. B.; Huang, Y.; Li, Y.; Ang, E.; Choo, J. R.; Goh, B.; Soo, R. A. Third Generation EGFR TKIs : Current Data and Future Directions. 2018, 1–14.
9. Jänne, P. A.; Yang, J. C.H.; Kim, D.W.; Planchard, D.; Ohe, Y.; Ramalingam, S. S.; Ahn, M.J.; Kim, S.-W.; Su, W.C.; Horn, L.; Haggstrom, D.; Felip, E.; Kim, J.H.; Frewer, P.; Cantarini, M.; Brown, K. H.; Dickinson, P. A.; Ghiorghiu, S.; Ranson, M. AZD9291 in EGFR Inhibitor–Resistant Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2015; 372 (18): 1689–1699. https://doi.org/10.1056/nejmoa1411817.
10. Osimertinib, D. A. De. Virtual Screening of Osimertinib and Dacomitinib Analogues with Potential Activity on EGFR (T790M and L858R Mutations) for Non-Small Cell Lung Cancer Treatment. 2021.
11. Sanduja, M.; Gupta, J.; Rawat, R.; Singh, U.; Verma, S. M. Designing, Molecular Docking, and Dynamics Simulations Studies of 1,2,3-Triazole Clamped Uracil-Coumarin Hybrids against EGFR Tyrosine Kinase. J. Appl. Pharm. Sci. 2020; 10 (3): 1–11. https://doi.org/10.7324/JAPS.2020.103001.
12. Suriya, U.; Mahalapbutr, P.; Wimonsong, W.; Yotphan, S.; Choowongkomon, K.; Rungrotmongkol, T. Quinoxalinones as A Novel Inhibitor Scaffold for EGFR (L858R/T790M/C797S) Tyrosine Kinase: Molecular Docking, Biological Evaluations, and Computational Insights. Molecules 2022; 27 (24): 1–15. https://doi.org/10.3390/molecules27248901.
13. Bertoli, E.; Carlo, E. De; Conte, A. Del; Stanzione, B.; Revelant, A.; Fassetta, K.; Spina, M.; Bearz, A. Acquired Resistance to Osimertinib in EGFR -Mutated Non-Small Cell Lung Cancer : How Do We Overcome It ? 2022.
14. Zhang, C.; Wu, Z.; Yin, D.; Zhou, B.; Guo, Y.; Lu, H. Laboratory Communications A Strategy for Selecting the PH of Protein Solutions to Enhance Crystallization Laboratory Communications. 2013; 821–826. https://doi.org/10.1107/S1744309113013651.
15. Verdonk, M. L.; Cole, J. C.; Hartshorn, M. J.; Murray, C. W.; Taylor, R. D. Improved Protein–Ligand Docking Using GOLD Marcel. Proteins 2003, 52 (January), 609–623.
16. Thirunavukkarasu, M. K.; Suriya, U.; Rungrotmongkol, T. In Silico Screening of Available Drugs Targeting Non-Small Cell Lung Cancer Targets : A Drug Repurposing Approach. 2022.
17. Vichai, V.; Kirtikara, K. Sulforhodamine B Colorimetric Assay for Cytotoxicity Screening. Nat. Protoc. 2006; 1 (3): 1112–1116. https://doi.org/10.1038/nprot.2006.179.
18. Kashima, K.; Kawauchi, H.; Tanimura, H.; Tachibana, Y.; Chiba, T. CH7233163 Overcomes Osimertinib Resistant EGFR-Del19 / T790M / C797S Mutation. 2020. https://doi.org/10.1158/1535-7163.MCT-20-0229.
19. Stamos, J.; Sliwkowski, M. X.; Eigenbrot, C. Structure of the Epidermal Growth Factor Receptor Kinase Domain Alone and in Complex with a 4-Anilinoquinazoline Inhibitor. 2002; 277 (48): 46265–46272. https://doi.org/10.1074/jbc.M207135200.
20. Masuzawa, K.; Yasuda, H.; Hamamoto, J.; Nukaga, S. Characterization of the Efficacies of Osimertinib and Nazartinib against Cells Expressing Clinically Relevant Epidermal Growth Factor Receptor Mutations. 2017; 8 (62): 105479–105491.
21. Kumar, V. S.; Kumar, T. V. A.; Parthasarathy, V. Assessing the Specificity of Paclitaxel towards the Marker Proteins of Breast Cancer Using In Silico Molecular Docking Study. J. Pharm. Res. Int. 2020; 32 (24): 64–73. https://doi.org/10.9734/jpri/2020/v32i2430811.
22. Bhal, S. Log P — Making Sense of the Value. Adv. Chem. Dev. 2007, 1–4.
23. Rajesh, U. C.; Kholiya, R.; Pavan, V. S.; Rawat, D. S. Catalyst-Free , Ethylene Glycol Promoted One-Pot Three Component Synthesis of 3-Amino Alkylated Indoles via Mannich-Type Reaction. 2014; 55: 2977–2981.
24. Adv. Synth. Catal. https://doi.org/10.1002/adsc.202000233.
25. Velazquez, E. J.; Neill, K. L. O. Non-Small-Cell Lung Cancer Cell Lines A549 and NCI-H460 Express Hypoxanthine Guanine Phosphoribosyltransferase on the Plasma Membrane. 2017, 1921–1932.
26. Boyle, M.; Thorn, V. M.; Quinones, N. Q. Oct. 20, 1957 Correlation. 1957, 256 (3), 1955–1958.