ABSTRACT:
This study focuses on the urgent issue of chronic wounds, especially in individuals with diabetes, where impaired tissue regeneration leads to non-healing wounds. Traditional systemic medication delivery systems sometimes fail to precisely target regions and can result in unwanted systemic side effects. Topical delivery of medication is a potential approach that aims to reduce systemic exposure, lower doses, and minimize off-target effects. However, this method faces difficulties such as medication breakdown, rapid removal, and uncontrolled discharge in chronic wounds, worsened by increasing bacterial resistance to antibiotics. Our work utilizes nanotechnology, primarily solid lipid nanoparticles (SLNs), to enhance wound healing methods due to their excellent safety record and effective encapsulation properties. Rutin is recognized for its anti-inflammatory, antioxidant, and possible antibacterial properties, making it a bioactive compound. Its proven ability to stimulate important cellular processes and promote tissue regeneration makes it an attractive option for treating diabetic wounds. Our research optimizes a lipid-based drug delivery system containing Rutin-loaded SLNs, with in vitro tests confirming the specific composition of the carrier for efficient treatment of diabetic wounds. This study represents a significant advancement in improving treatment methods for diabetic wounds by utilizing nanotechnology and Rutin-loaded SLNs to enhance and target wound healing more effectively. Further research is warranted to authenticate its clinical applicability, marking a crucial step towards enhancing diabetic wound management strategies.
Cite this article:
Rahul Yadav, Anand Mahalvar. Development and Optimization of Rutin-loaded Nanolipid Carrier for the Healing and Management of Diabetic Wound. Research Journal Pharmacy and Technology. 2025;18(3):1078-8. doi: 10.52711/0974-360X.2025.00155
Cite(Electronic):
Rahul Yadav, Anand Mahalvar. Development and Optimization of Rutin-loaded Nanolipid Carrier for the Healing and Management of Diabetic Wound. Research Journal Pharmacy and Technology. 2025;18(3):1078-8. doi: 10.52711/0974-360X.2025.00155 Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-3-16
REFERENCES:
1. C.H. Lee, S.H. Chang, W.J. Chen, K.C. Hung, Y.H. Lin, S.J. Liu, M.J. Hsieh, J.H.S. Pang, J.H. Juang, Augmentation of diabetic wound healing and enhancement of collagen content using nanofibrous glucophage-loaded collagen/PLGA scaffold membranes., J. Colloid Interface Sci. 2015; 439: 88–97. https://doi.org/10.1016/j.jcis.2014.10.028.
2. S.Z. Zainuddin, N.J.M.R. Ramond, N.K. Anuar, Polysaccharide-Based Formulations for the Treatment of Diabetic Wounds: A Review, Res. J. Pharm. Technol. 2023; 16: 2835–2842. https://doi.org/10.52711/0974-360X.2023.00467.
3. K. Ridhanya, Rajakumari, Skin Wound Healing: An update on the Current knowledge and Concepts, Res. J. Pharm. Technol. 2019; 12:1448–1452. https://doi.org/10.5958/0974-360X.2019.00240.3.
4. R.G. Frykberg, J. Banks, Challenges in the Treatment of Chronic Wounds., Adv. Wound Care. 2015; 4: 560–582. https://doi.org/10.1089/wound.2015.0635.
5. S. Patel, S.D. Dwivedi, K. Yadav, J.R. Kanwar, M.R. Singh, D. Singh, Pathogenesis and Molecular Targets in Treatment of Diabetic Wounds, in: Obes. Diabetes, J. Faintuc, Springer Nature Switzerland AG. 2020, 2020: 747–758. https://doi.org/10.1007/978-3-030-53370-0_55.
6. S. Patel, S. Srivastava, M.R. Singh, D. Singh, Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing, Biomed. Pharmacother. 2019; 112: 108615. https://doi.org/https://doi.org/10.1016/j.biopha.2019.108615.
7. S. Patel, Pragati, S.D. Dwivedi, K. Yadav, J.R. Kanwar, M.R. Singh, D. Singh, Pathogenesis and Molecular Targets in Treatment of Diabetic Wounds, in: Obes. Diabetes, Springer Nature Singapore. 2020: 747–758. https://doi.org/10.1007/978-3-030-53370-0_55.
8. K. Yadav, A. Soni, D. Singh, M.R. Singh, Polymers in topical delivery of anti-psoriatic medications and other topical agents in overcoming the barriers of conventional treatment strategies, Prog. Biomater. 2021; 9.
9. K. Yadav, K.K. Sahu, Sucheta, S.P.E. Gnanakani, P. Sure, R. Vijayalakshmi, V.D. Sundar, V. Sharma, R. Antil, M. Jha, S. Minz, A. Bagchi, M. Pradhan, Biomedical applications of nanomaterials in the advancement of nucleic acid therapy: Mechanistic challenges, delivery strategies, and therapeutic applications, Int. J. Biol. Macromol. 2023; 241: 124582. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2023.124582.
10. H. Yadav, A. Mahalvar, M. Pradhan, K. Yadav, K. Kumar Sahu, R. Yadav, Exploring the potential of phytochemicals and nanomaterial: a boon to antimicrobial treatment, Med. Drug Discov. 2023; 17: 100151. https://doi.org/https://doi.org/10.1016/j.medidd.2023.100151.
11. K. Yadav, D. Singh, M.R. Singh, S. Minz, K.K. Sahu, M. Kaurav, M. Pradhan, Dermal nanomedicine: Uncovering the ability of nucleic acid to alleviate autoimmune and other related skin disorders, J. Drug Deliv. Sci. Technol. 2022; 73: 103437. https://doi.org/https://doi.org/10.1016/j.jddst.2022.103437.
12. A. Jaiswal, V. Senthil, T.K. Das, Design and Development of Valsartan Loaded Nanostructured Lipid Carrier for the Treatment of Diabetic wound Healing, Res. J. Pharm. Technol. 2019; 12: 2922. https://doi.org/10.5958/0974-360X.2019.00492.X.
13. S.F. Spampinato, G.I. Caruso, R. De Pasquale, M.A. Sortino, S. Merlo, The Treatment of Impaired Wound Healing in Diabetes: Looking among Old Drugs., Pharmaceuticals (Basel). 2020; 13: https://doi.org/10.3390/ph13040060.
14. F. Rezkita, K.G.P. Wibawa, A.P. Nugraha, Curcumin loaded Chitosan Nanoparticle for Accelerating the Post Extraction Wound Healing in Diabetes Mellitus Patient: A Review, Res. J. Pharm. Technol. 2020; 13: 1039–1042. https://doi.org/10.5958/0974-360X.2020.00191.2.
15. K.K. Sahu, M. Kaurav, P. Bhatt, S. Minz, M. Pradhan, J. Khan, R.K. Sahu, K. Yadav, 5- Utility of nanomaterials in wound management, in: P.R. Solanki, A. Kumar, R. Pratap Singh, J. Singh, K. RB Singh (Eds.), Nanotechnological Asp. Next-Generation Wound Manag., Academic Press. 2024: 101–130. https://doi.org/https://doi.org/10.1016/B978-0-323-99165-0.00006-X.
16. D. Singh, K. Yadav, M.R. Singh, N.D. Chaurasiya, B.L. Tekwani, Chapter 16 - Novel drug delivery approaches for improving therapeutic applications of berberine and berberine-rich herbal preparations, in: M.R. Singh, D. Singh (Eds.), Phytopharm. Herb. Drugs, Academic Press, 2023: 375–401. https://doi.org/https://doi.org/10.1016/B978-0-323-99125-4.00016-0.
17. S. Maheshwari, R.K. Tiwari, L. Singh, Green Expertise: Synthesis of Silver Nanoparticles for Wound Healing Application an Overview, Res. J. Pharm. Technol. 2021; 14: 1149–1154. https://doi.org/10.5958/0974-360X.2021.00206.7.
18. H.Q. Raheem, E.F. Hussein, A.H. Rasheed, N.K. Imran, Antibacterial action of Silver Nanoparticles against Staphylococcus aureus Isolated from wound infection, Res. J. Pharm. Technol. 2022; 15: 2413–2416. https://doi.org/10.52711/0974-360X.2022.00401.
19. S. Saghazadeh, C. Rinoldi, M. Schot, S.S. Kashaf, F. Sharifi, E. Jalilian, K. Nuutila, G. Giatsidis, P. Mostafalu, H. Derakhshandeh, K. Yue, W. Swieszkowski, A. Memic, A. Tamayol, A. Khademhosseini, Drug delivery systems and materials for wound healing applications., Adv. Drug Deliv. Rev. 2018; 127: 138–166. https://doi.org/10.1016/j.addr.2018.04.008.
20. K. Yadav, D. Singh, M.R. Singh, M. Pradhan, Multifaceted targeting of cationic liposomes via co-delivery of anti-IL-17 siRNA and corticosteroid for topical treatment of psoriasis, Med. Hypotheses. 2020; 145: 110322. https://doi.org/10.1016/j.mehy.2020.110322.
21. A. Kushwaha, L. Goswami, B.S. Kim, Nanomaterial-Based Therapy for Wound Healing., Nanomater. (Basel, Switzerland). 2022; 12. https://doi.org/10.3390/nano12040618.
22. M.R. Singh, K. Pradhan, M. Pradhan, K. Yadav, N.S. Chauhan, S.D. Dwivedi, D. Singh, Chapter 4 - Lipid-based particulate systems for delivery of plant actives and extracts: Extraction, prospective carriers, and safety issues, in: M.R. Singh, D. Singh (Eds.), Phytopharm. Herb. Drugs, Academic Press, 2023: 83–114. https://doi.org/https://doi.org/10.1016/B978-0-323-99125-4.00017-2.
23. P. Tiwari, R.P. Shukla, K. Yadav, D. Panwar, N. Agarwal, A. Kumar, N. Singh, A.K. Bakshi, D. Marwaha, S. Gautam, N. Rai, P.R. Mishra, Exploring nanocarriers as innovative materials for advanced drug delivery strategies in onco-immunotherapies, J. Mol. Graph. Model. 2024; 128: 108702. https://doi.org/https://doi.org/10.1016/j.jmgm.2024.108702.
24. P.R. Mongia, M.S. Amrita, K. Sahu, K. Yadav, R. Joshi, M. Kaurav, S. Minz, R. Raj, M. Gupta, Chapter 5 - Multifunctional nanocarrier-mediated delivery for targeting and treating skin cancer, in: A.K. Yadav, R. Shukla, R.R. Ujjwal (Eds.), Multifunct. Nanocomposites Target. Drug Deliv. Cancer Ther. Academic Press, 2024: 113–138. https://doi.org/https://doi.org/10.1016/B978-0-323-95303-0.00013-7.
25. N. Salvi, R. Khan, Formulation and Development of Nanoparticulate System containing Rutin from Leaves Extract of Aegle marmelos for effective Management of Diabetes, Res. J. Pharm. Technol. 2023; 16: 2311–2316. https://doi.org/10.52711/0974-360X.2023.00380.
26. K.P. Meena, P. Choudhary, T. Karri, P. Samal, Preparation and Characterization of Rutin Loaded Microparticles for the treatment of Diabetes. Res. J. Pharm. Technol. 2023; 16: 4867–4874. https://doi.org/10.52711/0974-360X.2023.00789.
27. A. Ismail, E. El-Biyally, W. Sakran, An Innovative Approach for Formulation of Rutin Tablets Targeted for Colon Cancer Treatment. AAPS PharmSciTech. 2023; 24: 68. https://doi.org/10.1208/s12249-023-02518-7.
28. K. Yadav, D. Singh, M.R. Singh, N.S. Chauhan, S. Minz, M. Pradhan, Chapter 18 - Nanobiomaterials as novel modules in the delivery of artemisinin and its derivatives for effective management of malaria, in: N.S. Chauhan, D.N.B.T.-N.P. in V.-B.D.M. Chauhan (Eds.), Academic Press, 2023: 447–466. https://doi.org/https://doi.org/10.1016/B978-0-323-91942-5.00003-3.
29. R. Kumar, R. Gupta, B. Kumar, B. Kapoor, Wound Healing Potential of Polyherbal Formulation in Rats, Res. J. Pharm. Technol. 2021; 14: 2195–2199. https://doi.org/10.52711/0974-360X.2021.00389.
30. O. Katare, K. Raza, B. Singh, S. Dogra, Novel drug delivery systems in topical treatment of psoriasis: Rigors and vigors, in: Indian J. Dermatol. Venereol. Leprol. 2010: 612–621. https://doi.org/10.4103/0378-6323.72451.
31. M. Pradhan, K. Yadav, D. Singh, M.R. Singh, Topical delivery of fluocinolone acetonide integrated NLCs and salicylic acid enriched gel: A potential and synergistic approach in the management of psoriasis, J. Drug Deliv. Sci. Technol. 2021; 61: 102282. https://doi.org/10.1016/j.jddst.2020.102282.
32. M. Pradhan, A. Alexander, M.R. Singh, D. Singh, S. Saraf, S. Saraf, K. Yadav, Ajazuddin, Statistically optimized calcipotriol fused nanostructured lipid carriers for effectual topical treatment of psoriasis, J. Drug Deliv. Sci. Technol. 2020; 102168. https://doi.org/https://doi.org/10.1016/j.jddst.2020.102168.
33. V.T. Arantes, A.A.G. Faraco, F.B. Ferreira, C.A. Oliveira, E. Martins-Santos, P. Cassini-Vieira, L.S. Barcelos, L.A.M. Ferreira, G.A.C. Goulart, Retinoic acid-loaded solid lipid nanoparticles surrounded by chitosan film support diabetic wound healing in in vivo study., Colloids Surf. B. Biointerfaces. 2020; 188; 110749. https://doi.org/10.1016/j.colsurfb.2019.110749.
34. K. Yadav, D. Singh, M.R. Singh, Development and characterization of corticosteroid loaded lipid carrier system for psoriasis, Res. J. Pharm. Technol. 2021; 14: 966–970. https://doi.org/10.5958/0974-360x.2021.00172.4.
35. J. Huang, Q. Wang, T. Li, N. Xia, Q. Xia, Nanostructured lipid carrier (NLC) as a strategy for encapsulation of quercetin and linseed oil: Preparation and in vitro characterization studies, J. Food Eng. 2017; 215: 1–12. https://doi.org/https://doi.org/10.1016/j.jfoodeng.2017.07.002.
36. J.Y. Fang, C.L. Fang, C.H. Liu, Y.H. Su, Lipid nanoparticles as vehicles for topical psoralen delivery: Solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC), Eur. J. Pharm. Biopharm. 2008; 70: 633–640. https://doi.org/10.1016/j.ejpb.2008.05.008.
37. A. Qadir, M. Aqil, A. Ali, M.H. Warsi, M. Mujeeb, F.J. Ahmad, S. Ahmad, S. Beg, Nanostructured lipidic carriers for dual drug delivery in the management of psoriasis: Systematic optimization, dermatokinetic and preclinical evaluation, J. Drug Deliv. Sci. Technol. 2020; 57: 101775. https://doi.org/10.1016/j.jddst.2020.101775.
38. K. Yadav, D. Singh, M.R. Singh, Nanovesicles delivery approach for targeting steroid mediated mechanism of antipsoriatic therapeutics, J. Drug Deliv. Sci. Technol. 2021; 65: 102688. https://doi.org/10.1016/j.jddst.2021.102688.
39. N. Fatima, S. Rehman, B. Nabi, S. Baboota, J. Ali, Harnessing nanotechnology for enhanced topical delivery of clindamycin phosphate, J. Drug Deliv. Sci. Technol. 2019; 54: 101253. https://doi.org/10.1016/j.jddst.2019.101253.
40. P. Patel, A. Parashar, M. Kaurav, K. Yadav, D. Siingh, G.D. Gupta, B. Kurmi, Niosome: A Vesicular Drug Delivery Tool, in: Nanoparticles Nanocarriers-Based Pharm. Formul., Bentham Science Publishers Ltd., 2022: 333–364. https://doi.org/10.2174/9789815049787122010014.
41. K. Yadav, M. Kaurav, P. Patel, A.K. Parashar, B. Das Kurmi, A.K. Jain, K.M. Eds, Resealed Erythrocytes : As A Drug Delivery Tool only beotstribut use on alpriv For or uplo adpe rsto any one ate or any where alpriv diForri but ed or up load pers to any. 2022. 365–394.
42. A. Parashar, P. Patel, M. Kaurav, K. Yadav, D. Siingh, G.D. Gupta, B. Kurmi, Nanomaterials as Diagnostic Tools and Drug Carriers, in: Nanoparticles Nanocarriers-Based Pharm. Formul., Bentham Science Publishers Ltd., 2022: 126–156. https://doi.org/10.2174/9789815049787122010007.
43. R.P. Shukla, S. Urandur, V.T. Banala, D. Marwaha, S. Gautam, N. Rai, N. Singh, P. Tiwari, P. Shukla, P.R. Mishra, Development of putrescine anchored nano-crystalsomes bearing doxorubicin and oleanolic acid: Deciphering their role in inhibiting metastatic breast cancer, Biomater. Sci. 2021; 9: 1779–1794. https://doi.org/10.1039/d0bm01033b.
44. H. Yadav, A. Mahalvar, M. Pradhan, K. Yadav, K. Kumar Sahu, R. Yadav, Exploring the potential of phytochemicals and nanomaterial: A boon to antimicrobial treatment, Med. Drug Discov. 2023; 17. https://doi.org/10.1016/j.medidd.2023.100151.
45. R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R.R. Bhonde, M. Sastry, Biocompatibility of Gold Nanoparticles and Their Endocytotic Fate Inside the Cellular Compartment: A Microscopic Overview, Langmuir. 2005; 21: 10644–10654. https://doi.org/10.1021/la0513712.
46. V.A. Kurkin, E.A. Kupriyanova, HPLC Assay of Rutin Content in the Leaves of the Black Poplar, Pharm. Chem. J. 2020; 54: 717–720. https://doi.org/10.1007/s11094-020-02261-4.
47. S. Sharma, A. Verma, J. Singh, V. Teja, N. Mittapelly, G. Pandey, S. Urandur, R. Shukla, R. Konwar, P. Mishra, Vitamin B6 Tethered Endosomal pH Responsive Lipid Nanoparticles for Triggered Intracellular Release of Doxorubicin, ACS Appl. Mater. Interfaces. 2016; 8. https://doi.org/10.1021/acsami.6b08958.
48. H.R. Kelidari, M. Saeedi, J. Akbari, K. Morteza-Semnani, P. Gill, H. Valizadeh, A. Nokhodchi, Formulation optimization and in vitro skin penetration of spironolactone loaded solid lipid nanoparticles, Colloids Surfaces B Biointerfaces. 2015; 128: 473–479. https://doi.org/https://doi.org/10.1016/j.colsurfb.2015.02.046.
49. S. Bhanja, B.S. Rawat, M. Sudhakar, B. Panigrahi, Design , Development and Evaluation of Transdermal Patches of Ramipril, Int. J. Adv. Pharm. , Biol. Chem. 2014; 3: 352–360.
50. X. Xu, M.A. Khan, D.J. Burgess, A quality by design (QbD) case study on liposomes containing hydrophilic API: I. Formulation, processing design and risk assessment, Int. J. Pharm. 2011; 419: 52–59. https://doi.org/10.1016/j.ijpharm.2011.07.012.
51. K.K. Sahu, M. Pradhan, D. Singh, M.R. Singh, K. Yadav, Non-viral nucleic acid delivery approach: A boon for state-of-the-art gene delivery, J. Drug Deliv. Sci. Technol. 2023; 80: 104152. https://doi.org/https://doi.org/10.1016/j.jddst.2023.104152.
52. K. Yadav, D. Singh, M.R. Singh, M. Pradhan, Nano-constructs targeting the primary cellular energy source of cancer cells for modulating tumor progression, OpenNano. 2022; 8. https://doi.org/10.1016/j.onano.2022.100107.
53. Q. Shen, X. Zhang, J. Qi, G. Shu, Y. Du, X. Ying, Sinomenine hydrochloride loaded thermosensitive liposomes combined with microwave hyperthermia for the treatment of rheumatoid arthritis., Int. J. Pharm. 2020; 576; 119001. https://doi.org/10.1016/j.ijpharm.2019.119001.
54. A. Gupta, S.R. Bonde, S. Gaikwad, A. Ingle, A.K. Gade, M. Rai, Lawsonia inermis-mediated synthesis of silver nanoparticles: activity against human pathogenic fungi and bacteria with special reference to formulation of an antimicrobial nanogel., IET Nanobiotechnology. 2014; 8: 172–178. https://doi.org/10.1049/iet-nbt.2013.0015.
55. J.B. Engel, C. Heckler, E.C. Tondo, D.J. Daroit, P. da Silva Malheiros, Antimicrobial activity of free and liposome-encapsulated thymol and carvacrol against Salmonella and Staphylococcus aureus adhered to stainless steel., Int. J. Food Microbiol. 2017; 252: 18–23. https://doi.org/10.1016/j.ijfoodmicro.2017.04.003.
56. S. Sohrabi, A. Haeri, A. Mahboubi, A. Mortazavi, S. Dadashzadeh, Chitosan gel-embedded moxifloxacin niosomes: An efficient antimicrobial hybrid system for burn infection, Int. J. Biol. Macromol. 2016; 85: 625–633. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2016.01.013.
57. S. Urandur, V. Teja, R. Shukla, N. Mittapelly, G. Pandey, N. Kalleti, K. Mitra, S. Rath, R. Trivedi, R. Pratibha, P. Mishra, Anisamide Anchored Lyotropic Nano Liquid Crystalline Particles with AIE Effect - A Smart Optical Beacon for Tumor Imaging and Therapy, ACS Appl. Mater. Interfaces. 2018; 10. https://doi.org/10.1021/acsami.7b19109.
58. E. Touitou, N. Shaco‐Ezra, N. Dayan, M. Jushynski, R. Rafaeloff, R. Azoury, Dyphylline liposomes for delivery to the skin, J. Pharm. Sci. 1992; 81: 131–134. https://doi.org/10.1002/jps.2600810206.
59. R. Panchagnula, H. Desu, A. Jain, S. Khandavilli, Feasibility studies of dermal delivery of paclitaxel with binary combinations of ethanol and isopropyl myristate: Role of solubility, partitioning and lipid bilayer perturbation, Farmaco. 2005; 60: 894–899. https://doi.org/10.1016/j.farmac.2005.07.004.
60. Q. Kang, J. Liu, X.Y. Liu, N.L. Mo, Y.J. Wang, Y. Zhao, X. Liu, Q. Wu, Application of quality by design approach to formulate and optimize tripterine loaded in nanostructured lipid carriers for transdermal delivery, J. Drug Deliv. Sci. Technol. 2019; 52: 1032–1041. https://doi.org/10.1016/j.jddst.2019.06.006.
61. M. Pradhan, D. Singh, M.R. Singh, Development characterization and skin permeating potential of lipid based novel delivery system for topical treatment of psoriasis, Chem. Phys. Lipids. 2015; 186: 9–16. https://doi.org/https://doi.org/10.1016/j.chemphyslip.2014.11.004.
62. M. Agrawal, M. Pradhan, G. Singhvi, R. Patel, Ajazuddin, A. Alexander, Thermoresponsive in situ gel of curcumin loaded solid lipid nanoparticle: Design, optimization and in vitro characterization, J. Drug Deliv. Sci. Technol. 2022; 71: 103376. https://doi.org/https://doi.org/10.1016/j.jddst.2022.103376.
63. G. Amasya, O. Inal, C.T. Sengel-Turk, SLN enriched hydrogels for dermal application: Full factorial design study to estimate the relationship between composition and mechanical properties, Chem. Phys. Lipids. 2020; 228: 104889. https://doi.org/10.1016/j.chemphyslip.2020.104889.
64. M.R. Singh, D. Singh, S. Saraf, Formulation optimization of controlled delivery system for antihypertensive peptide using response surface methodology, Am. J. Drug Discov. Dev. 2011; 174–187. https://doi.org/10.3923/ajdd.2011.174.187.
65. A. Milanovic, I. Aleksic, S. Ibric, J. Parojcic, S. Cvijic, Hot-melt coating with Precirol ATO 5 in a fluidized-bed apparatus: Application of experimental design in the optimization of process parameters, J. Drug Deliv. Sci. Technol. 2018; 46: 274–284. https://doi.org/https://doi.org/10.1016/j.jddst.2018.05.030.
66. A. Gupta, A.P. Costa, X. Xu, S.L. Lee, C.N. Cruz, Q. Bao, D.J. Burgess, Formulation and characterization of curcumin loaded polymeric micelles produced via continuous processing, Int. J. Pharm. 2020; 583: 119340. https://doi.org/10.1016/j.ijpharm.2020.119340.
67. E. Lasoń, E. Sikora, J. Ogonowski, Influence of process parameters on properties of nanostructured lipid carriers (NLC) formulation, Acta Biochim. Pol. 2013; 60: 773–777. https://doi.org/10.18388/abp.2013_2056.
68. N.K. Garg, G. Sharma, B. Singh, P. Nirbhavane, R.K. Tyagi, R. Shukla, O.P. Katare, Quality by Design (QbD)-enabled development of aceclofenac loaded-nano structured lipid carriers (NLCs): An improved dermatokinetic profile for inflammatory disorder(s), Int. J. Pharm. 2017; 517: 413–431. https://doi.org/10.1016/j.ijpharm.2016.12.010.
69. P. Tiwari, R.P. Shukla, K. Yadav, N. Singh, D. Marwaha, S. Gautam, A.K. Bakshi, N. Rai, A. Kumar, D. Sharma, P.R. Mishra, Dacarbazine-primed carbon quantum dots coated with breast cancer cell-derived exosomes for improved breast cancer therapy., J. Control. Release Off. J. Control. Release Soc. 2023; 365: 43–59. https://doi.org/10.1016/j.jconrel.2023.11.005.
70. H.A. Abbas, M.A. El-Saysed, A.M. Ganiny, A.A. Fattah, Antimicrobial Resistance Patterns of Proteus mirabilis isolates from Urinary tract, burn wound and Diabetic foot Infections, Res. J. Pharm. Technol. 2018; 11: 249–252. https://doi.org/10.5958/0974-360X.2018.00046.X.
71. Veintramuthusankar, Pushparajudayakumar, Rajanduraibabyroselin. Development of Mupirocin- Tinidazole solid- Lipid Nanoparticles Loaded Topical gel for the Management of Bacterial Wound Infections., Res. J. Pharm. Technol. 2021; 14: 2785–2790. https://doi.org/10.52711/0974-360X.2021.00491.
72. N.A. Kumar, N.S. Rejinold, P. Anjali, A. Balakrishnan, R. Biswas, R. Jayakumar, Preparation of chitin nanogels containing nickel nanoparticles, Carbohydr. Polym. 2013; 97: 469–474. https://doi.org/10.1016/j.carbpol.2013.05.009.
73. R. Yadav, M. Pradhan, K. Yadav, A. Mahalvar, H. Yadav, Present scenarios and future prospects of herbal nanomedicine for antifungal therapy, J. Drug Deliv. Sci. Technol. 2022; 74: 103430. https://doi.org/https://doi.org/10.1016/j.jddst.2022.103430.
74. P. Tiwari, K. Yadav, R. Shukla, S. Gautam, D. Marwaha, M. Sharma, P. Mishra, Surface modification strategies in translocating nano-vesicles across different barriers and the role of bio-vesicles in improving anticancer therapy, J. Control. Release. 2023; 363; 290–348. https://doi.org/10.1016/j.jconrel.2023.09.016.