Author(s):
Mhaveer Singh, Kamal YT, Navneet Verma, Arun Mishra, Vijay Sharma, Sayeed Ahmad
Email(s):
maahishaalu7@gmail.com , mhaveer.singh@iftmuniversity.ac.in
DOI:
10.52711/0974-360X.2025.00077
Address:
Mhaveer Singh*1,5, Kamal YT2, Navneet Verma3, Arun Mishra4, Vijay Sharma3, Sayeed Ahmad5
1School of Pharmaceutical Science, IFTM University, Moradabad 244102-India.
2Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 611441, Saudi Arabia.
3Pharmacy Academy, IFTM University, Moradabad 244102 – India.
4SOS School of Pharmacy, IFTM University, Moradabad 244102 – India.
5Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Hamdard University, Hamdard Nagar, New Delhi 110062, India.
*Corresponding Author
Published In:
Volume - 18,
Issue - 2,
Year - 2025
ABSTRACT:
Herbal drugs are gaining momentum and worldwide acceptability for their importance in cure with safety, which has recently recognized and accepted globally during the COVID-19 pandemic. The therapeutic potential of plant-based traditional drugs in chronic diseases generally belongs to their combating effects on oxidative stress. Therefore, traditional herbal drugs can be screened out by assessing their anti-oxidant potential before performing their pre-clinical or clinical studies. The current study has demonstrated the in-vitro antioxidant potential of eight traditional medicinal plants by using five worldwide acceptable methods. The antioxidant potential was tested by evaluating total phenolic contents and reducing capacity along with the determination of DPPH, Nitric oxide, and Superoxide anionic free radical scavenging methods in eight traditional medicinal plants [viz. Emblica officinalis Linn., Amomum subulatum Roxb., Coriandrum sativum Linn., Borago officinalis Linn., Cinnamomum cassia Blume (leaves), Nardostachys jatamansi DC, Crocus sativus Linn. and Santalum album]. The correlation has been established among the results obtained, which can be considered as evidence of the method's reliability. The total phenolic contents have been estimated in all drug samples and amla was found to contain maximum, whereas sandal had minimum phenolic contents. The results of the reducing power method were compiled by taking three readings and presented with standard deviation. The results against DPPH, Nitric oxide, and superoxide free radicals were demonstrated by calculating % inhibition and subsequently by calculating IC50 values, respectively. The proposed methodology can be adopted to screen out the bioactivity-guided fractions as well as different plant samples before going to perform final in-vivo/preclinical or clinical studies for chronic diseases. The results of the study are encouraging and evidently complementary when correlations have been established among the results obtained by different methods.
Cite this article:
Mhaveer Singh, Kamal YT, Navneet Verma, Arun Mishra, Vijay Sharma, Sayeed Ahmad. Anti-Oxidant Potential of some Herbal Drugs: A Bioactivity Guiding approach for Chronic Diseases. Research Journal of Pharmacy and Technology.2025;18(2):513-1. doi: 10.52711/0974-360X.2025.00077
Cite(Electronic):
Mhaveer Singh, Kamal YT, Navneet Verma, Arun Mishra, Vijay Sharma, Sayeed Ahmad. Anti-Oxidant Potential of some Herbal Drugs: A Bioactivity Guiding approach for Chronic Diseases. Research Journal of Pharmacy and Technology.2025;18(2):513-1. doi: 10.52711/0974-360X.2025.00077 Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-2-9
REFERENCES:
1. Prakash J. Srivastava S. Ray RS. Singh N. Rajpali R. Singh GN. Current Status of Herbal Drug Standards in the Indian Pharmacopoeia. Phytotherapy Research. 2017; 31(12): 1817-23.
2. Alok S. Jain SK. Verma A. Kumar M. Mahor A. Sabharwal M. Herbal antioxidant in clinical practice: a review. Asian Pacific Journal of Tropical Biomedicine. 2014; 4(1): 78-84.
3. Yoshimi N. Keita S. Fumihiko Y. Masahiro K. Toshihiko O. Extensive screening for herbal extracts with potent antioxidant properties. Journal of Clinical Biochemistry and Nutrition. 2011; 48(1): 78-84.
4. Sawant O. Kadam VJ. Ghosh R. In vitro free radical scavenging and antioxidant activity of Adiantum lunulatum. Journal of herbal medicine and toxicology. 2009; 3(2): 39-44.
5. Camini F. Costa D. Silymarin: not just another antioxidant. Journal of Basic and Clinical Physiology and Pharmacology. 2020; 31(4): 20190206. https://doi.org/10.1515/jbcpp-2019-0206
6. Mirmiran P. Hosseini-Esfahani F. Esfandiar Z. Hosseinpour-Niazi S. Azizi F. Associations between dietary antioxidant intakes and cardiovascular disease. Scientific Reports. 2022; 12(1): 1504. doi: 10.1038/s41598-022-05632-x.
7. Tajuddin Nasiruddin M. Ahmad N. Effect of an Unani formulations on lipid profile in rat. Indian Journal of Pharmacology. 2006; 38: 56-57.
8. Singleton VL. Orthofer R. Lamuela-Raventós RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology. 1999; 299: 152-78.
9. Molina-Cortés A. Sánchez-Motta T. Tobar-Tosse F. Quimbaya M. Spectrophotometric Estimation of Total Phenolic Content and Antioxidant Capacity of Molasses and Vinasses Generated from the Sugarcane Industry. Waste and Biomass Valorization. 2020; 11: 3453-63.
10. Ferreira ICFR. Baptista P. Vilas-Boas M. Barros L. Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: Individual cap and stipe activity. Food Chemistry. 2007; 100: 1511-16.
11. Spiegel M. Kapusta K. Kołodziejczyk W. Saloni J. Żbikowska B. Hill GA. Sroka Z. Antioxidant Activity of Selected Phenolic Acids-Ferric Reducing Antioxidant Power Assay and QSAR Analysis of the Structural Features. Molecules. 2020; 25(13): 3088. doi: 10.3390/molecules25133088.
12. Baliyan S. Mukherjee R. Priyadarshini A. Vibhuti A. Gupta A. Pandey RP. Chang CM. Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules. 2022; 27(4): 1326. doi: 10.3390/molecules27041326.
13. Saranraj P. Asokan, Neethu. Free Radical - A Sword with two Edges. Asian Journal of Research in Chemistry. 2021; 202114: 1 - 6.
14. Mrunali P. Nikhita P. Deepak K. In vitro Evaluation of Antioxidant Potential of N-Acetyl-D-Glucosamine. Asian Journal of Research in Pharmaceutical Science. 2017; 7: 120. 10.5958/2231-5659.2017.00019.4.
15. Tanaka M. Kuei CW. Nagashima Y. Taguchi T. Application of antioxidative maillrad reaction products from histidine and glucose to sardine products. Nippon Suisan Gakkaishi. 1998; 54: 1409-14.
16. Duh PD. Tu YY. Yen GC. Antioxidant activity of water extract of Chrysanthemum moifolium Ramat. Lebensmittel-Wissenschaft and Technologie. 1999; 32: 269-77.
17. Gordon MH. The mechanism of the antioxidant action in vitro. In: Food antioxidants. Hudson BJF (ed.). London, Elsevier, 1990; pp.1-18.
18. Rahul J. Tawar M. Gaurav M. Apurva F. Renuka S. Purvaja P. An Updated Review on Vitamin C- An Excellent Drug Having a Great Scavenging Property. Asian Journal of Pharmaceutical Research. 2023; 25-30. 10.52711/2231-5691.2023.00004.
19. Yen G. and Duh P. Scavenging effect of methanolic extracts of peanut hulls on free-radical and active-oxygen species. Journal of Agricultural and Food Chemistry. 1994; 42: 629-32.
20. Finkel T. Holbrook NJ. Oxidants, oxidative stress and the biology of aging. Nature, 2000; 408: 239-47.
21. Seifried HE. Anderson DE. Fisher EI. Milner JA. A review of the interaction among dietary antioxidants and reactive oxygen species. Journal of Nutritional Biochemistry. 2007; 18: 567-79.
22. Valko M. Leibfritz D. Moncol J. Cronin MTD. Mazur M. Telser J. Free radicals and antioxidants in normal physiological functions and human disease. International Journal of Biochemistry and Cell Biology. 2007; 39: 44-84.
23. Fan Y. He X. Zhou S. Luo A. He T. Chun Z. Composition analysis and antioxidant activity of polysaccharide from Dendrobium denneanum. International journal of biological macromolecules. 2009; 45: 169-73.
24. Lin CL. Wang CC. Chang SC. Inbaraj BS. Chen BH. Antioxidative activity of polysaccharide fractions isolated from Lycium barbarum Linnaeus. International journal of biological macromolecules. 2009; 45: 146-51.
25. Kondragunta V. Karupuraj V. Perumal K. Antioxidant activity and Folic acid content in indigenous isolates of Ganoderma lucidum. Asian Journal of Pharmaceutical Analysis. 2016; 6: 213. 10.5958/2231-5675.2016.00032.6.
26. Ito N. Fukushima S. Hasegawa A. Shibata M. Ogiso T. Carcinogenicity of butylated hydroxyanisole in F344 rats. Journal of the National Cancer Institute. 1983; 70: 343-47.
27. Ness AR, Powles JW. Fruit and vegetables, and cardiovascular diseases: A review. International journal of epidemiology. 1997; 26: 1-13.
28. Johnson IT. New approaches to the role of diet in the prevention of cancers of the alimentary tract. Mutation research. 2004; 551: 9-28.
29. Gey KF. The antioxidant hypothesis of cardiovascular disease: Epidemiology and mechanisms. Biochemical Society transactions. 1990; 18: 1041-45.
30. Jmanjunathan J. Shyamalagowri S. Antioxidant activity of Psidium guajava Linn. Research Journal of Pharmaceutical Dosage Forms and Technology. 2020; 12(3):159.
31. Kumar PR. Priyadarsini SS. Margesan, Thirumal M. Nitric Oxide Radical Scavenging activity of the Ethanolic and Chloroform extracts of Ocimum basilicum Linn. Leaves-A Comparative Study. Research Journal of Pharmacognosy and Phytochemistry. 2017; 9: 215. 10.5958/0975-4385.2017.00039.5.
32. Kumar MS. Balachandran S. Chaudhury S. Influence of incubation temperatures on total phenolic, flavonoids content and free radical scavenging activity of callus from Heliotropium indicum L. Asian Journal of Pharmaceutica Research. 2012; 2: 2231–5683.
33. Potbhare M. Khobragade M. In-vitro evaluation of antioxidant potential of ayurvedic preparations lauha bhasma and mandura bhasma. Asian Journal of Pharmaceutica Research. 2017; 7(2): 63-66.
34. Ojha S. Golechha M. Kumari S. Arya DS. Protective effect of Emblica officinalis (amla) on isoproterenol-induced cardiotoxicity in rats. Toxicology and Industrial Health. 2012; 28(5): 399-11.
35. Muhammad A. Amna S. Sammia S. Antioxidant Activity of Cinnamon zeylanicum: (A Review). Asian Journal of Pharmaceutical Research. 2021; 106-116. 10.52711/2231-5691.2021.00021.
36. Chen TS. Liou SY. Chang YL. Antioxidant evaluation of three adaptogen extracts. American Journal of Chinese Medicine. 2008; 36: 1209-17.
37. Sengul M. Yildiz H. Gungor N. Cetin B. Eser Z. Ercisli S. Total phenolic content, antioxidant and antimicrobial activities of some medicinal plants. Pakistan Journal of Pharmaceutical Sciences. 2009; 22: 102-6.
38. Hosseinzadeh H. Noraei NB. Anxiolytic and hypnotic effect of Crocus sativus aqueous extract and its constituents, crocin and safranal, in mice. Phytotherapy Research. 2009; 23: 768-74.
39. Boskabady M.H. Shafei M.N. Shakiba A. Sefidi H.S. Effect of aqueous-ethanol extract from Crocus sativus (saffron) on guinea-pig isolated heart. Phytotherapy Research. 2008; 22: 330-34.
40. Shukurova P. Babaev R. A study into the effectiveness of the application of saffron extract in ocular pathologies in experiment. Georgian medical news. 2010; 182: 38-42.
41. Yadav AS. Bhatnagar D. Modulatory effect of spice extracts on iron-induced lipid peroxidation in rat liver. Biofactors 2007; 29: 147-57.
42. Kikuzaki H. Kawai Y. Nakatani N. 1, 1-Diphenyl-2-picrylhydrazyl radical-scavenging active compounds from greater cardamom (Amomum subulatum Roxb.). Journal of Nutritional Science and Vitaminology. 2001; 47: 167-71.
43. Dhuley JN. Anti-oxidant effects of cinnamon (Cinnamomum verum) bark and greater cardamom (Amomum subulatum) seeds in rats fed high fat diet. Indian Journal of Experimental Biology.1999; 37: 238-42.
44. Pandey A. Bigoniya P. Raj V. Patel KK. Pharmacological screening of Coriandrum sativum Linn. for hepatoprotective activity. Journal of Pharmacy and Bioallied Sciences. 2011; 3: 435-41.
45. Sreelatha S. Padma PR. Umadevi M. Protective effects of Coriandrum sativum extracts on carbon tetrachloride-induced hepatotoxicity in rats. Food and Chemical Toxicology. 2009; 47: 702-708.
46. Kim IS. Yang MR. Lee OH. Kang SN. Antioxidant activities of hot water extracts from various spices. International journal of molecular sciences. 2011; 12: 4120-31.
47. Dias MI. Barros L. Sousa MJ. Ferreira IC. Comparative study of lipophilic and hydrophilic antioxidants from in vivo and in vitro grown Coriandrum sativum. Plant Foods for Human Nutrition. 2011; 66: 181-6.
48. Satyanarayana S. Sushruta K. Sarma GS. Srinivas N. Subba Raju GV. Antioxidant activity of the aqueous extracts of spicy food additives--evaluation and comparison with ascorbic acid in in-vitro systems. Journal of herbal pharmacotherapy. 2004; 4: 1-10.
49. Deepa B. Anuradha CV. Antioxidant potential of Coriandrum sativum L. seed extract. Indian Journal of Experimental Biology. 2011; 49: 30-38.
50. Jabeen Q. Bashir S. Lyoussi B. Gilani AH. Coriander fruit exhibits gut modulatory, blood pressure lowering and diuretic activities. Journal of Ethnopharmacol. 2009: 122, 123-30.
51. Medhin DG. Hadházy Bakos P. Verzár-Petri G. Hypotensive effects of Lupinus termis and Coriandrum sativum in Anaesthetized Rats. A preliminary study. Acta Pharmaceutica Hungarica. 1986; 56: 59-63.
52. Subashini R. Ragavendran B. Gnanapragasam A. Yogeeta SK. Devaki T. Biochemical study on the protective potential of Nardostachys jatamansi extract on lipid profile and lipid metabolizing enzymes in doxorubicin intoxicated rats. Pharmazie 2007; 62: 382-87.
53. Subashini R. Yogeeta S. Gnanapragasam A. Devaki T. Protective effect of Nardostachys jatamansi on oxidative injury and cellular abnormalities during doxorubicin-induced cardiac damage in rats. Journal of Pharmacy and Pharmacology. 2006; 58: 257-62.
54. Rucker G. Tautges J. Sieck A. Wenzl H. Graf E. Isolation and pharmacodynamic activity of the sesquiterpene valeranone from Nardostachys jatamansi DC. Arzneimittelforschung 1978; 28: 7-13.