Author(s):
Narendra Kumar Dewangan, RPS Chauhan, Naveen Jain
Email(s):
narendra.nic@gmail.com , chauhanrudra72@gmail.com , naveenjainbit@gmail.com
DOI:
10.52711/0974-360X.2025.00076
Address:
Narendra Kumar Dewangan1, RPS Chauhan2, Naveen Jain3
1Dept. of CSE(AI&ML), SSIPMT Raipur, India.
2Dept. of CSE(AI&ML), SSIPMT Raipur, India.
3Dept. of Mechanical Engg., SSIPMT Raipur, India.
*Corresponding Author
Published In:
Volume - 18,
Issue - 2,
Year - 2025
ABSTRACT:
Since last decade mankind has been adversely affected due to prominent viruses such as Ebola, SARS-CoV and MERS. Recently COVID-19 has created a worldwide pandemic situation resulting in huge losses of human lifes. To safeguard humans and prevent economical losses the deep understanding of genetic structure is essential for developing proper medicine/vaccination.The present workanalyses and compare the genomic structure of COVID-19 virus with other calamitous viruses’trough pairwise comparison of local and global alignment of DNA sequences, measuring length of DNA sequence, Hamming Distance, GC content. Further Bio python has been used for the study and the results have been presented in the form of 3D structures and Dot plots. The result helps in understanding the virus relationships.It has been observed that COVID-19 and SARS have an 89% similarity which means both are the same genus and belong to the same family, COVID-19 and MERS have a 71% similarity, COVID-19 and Ebola have a 58% similarity, COVID-19 and HIV have a 61% similarity while COVID-19 and swine flu have a 62% similarity content. Since, Ebola, HIV, and swine flu have less percentage of similarity with COVID-19 they belong to a different family of viruses. This research emphasis on finding the similarities among the viruses and helps the scientist to develop appropriate medicine.
Cite this article:
Narendra Kumar Dewangan, RPS Chauhan, Naveen Jain. Bio Python Application for Comparative Analysis of COVID-19 Virus Genome with Other Calamitous Genome. Research Journal of Pharmacy and Technology.2025;18(2):502-2. doi: 10.52711/0974-360X.2025.00076
Cite(Electronic):
Narendra Kumar Dewangan, RPS Chauhan, Naveen Jain. Bio Python Application for Comparative Analysis of COVID-19 Virus Genome with Other Calamitous Genome. Research Journal of Pharmacy and Technology.2025;18(2):502-2. doi: 10.52711/0974-360X.2025.00076 Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-2-8
8. REFERENCES:
1. Stadnytskyi, V., Anfinrud, P., and Bax, A. Breathing, speaking, coughing or sneezing: What drives transmission of SA. 2021
2. Nakagawa, S., and Miyazawa, T. Genome evolution of SARS-CoV-2 and its virological characteristics. Inflammation and Regeneration. 2020; 40(1): 17.
3. Gopalan, H. S., and Misra, A. COVID-19 pandemic and challenges for socio-economic issues, healthcare and National Health Programs in India. Diabetes and Metabolic Syndrome: Clinical Research and Reviews. 2020; 14(5): 757–759.
4. Pereira, F., Azevedo, F., Carvalho, Â., Ribeiro, G. F., Budde, M. W., and Johansson, B. (). Pydna: a simulation and documentation tool for DNA assembly strategies using python. BMC Bioinformatics. 2015; 16: 1–10.
5. Knight, R., Vrbanac, A., Taylor, B. C., Aksenov, A., Callewaert, C., Debelius, J., Gonzalez, A., Kosciolek, T., McCall, L.-I., and McDonald, D. Best practices for analysing microbiomes. Nature Reviews Microbiology. 2018: 16(7): 410–422.
6. Cannataro, M., Guzzi, P. H., and Sarica, A. Data mining and life sciences applications on the grid. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2013; 3(3): 216–238.
7. Chapman, B., and Chang, J. Biopython: Python tools for computational biology. ACM Sigbio Newsletter. 2000; 20(2): 15–19.
8. Gauthier, J., Vincent, A. T., Charette, S. J., and Derome, N. A brief history of bioinformatics. Briefings in Bioinformatics. 2019; 20(6): 1981–1996.
9. Wang, X. H. (). Pair-wise and Multiple Sequence Alignment. In Data Analysis in Molecular Biology and Evolution. 1999: 33–39. Kluwer Academic Publishers. https://doi.org/10.1007/0-306-46893-X_5
10. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. Basic local alignment search tool. Journal of Molecular Biology. 1990; 215(3): 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
11. Sonnhammer, E. L. L., and Durbin, R. A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene. 1995; 167(1–2): GC1–GC10. https://doi.org/10.1016/0378-1119(95)00714-8 RS‐CoV‐2? Journal of Internal Medicine, 290(5), 1010–1027.
12. Koyutürk, M., Kim, Y., Topkara, U., Subramaniam, S., Szpankowski, W., and Grama, A. Pairwise Alignment of Protein Interaction Networks. Journal of Computational Biology. 2006; 13(2): 182–199. https://doi.org/10.1089/cmb.2006.13.182
13. Wijaya, H. A., Syaifudin, and Siswanto, T. Visualization of corona virus disease 2019 deoxyribonucleic acid data analysis. AIP Conference Proceedings. 2022; 2659(1): 90005.
14. Seibt, K. M., Schmidt, T., and Heitkam, T. FlexiDot: highly customizable, ambiguity-aware dotplots for visual sequence analyses. Bioinformatics. 2018; 34(20): 3575–3577. https://doi.org/10.1093/bioinformatics/bty395
15. Inheiro, H. P., de Souza Pinheiro, A., and Sen, P. K. Comparison of genomic sequences using the Hamming distance. Journal of Statistical Planning and Inference. 2005; 130(1–2): 325–339. https://doi.org/10.1016/j.jspi.2003.03.002
16. Apostolico, A., Guerra, C., and Pizzi, C. Alignment free sequence similarity with bounded hamming distance. 2014 Data Compression Conference. 2014: 183–192.
17. Shampo, M. A., and Kyle, R. A. J. Craig Venter—The Human Genome Project. Mayo Clinic Proceedings. 2011; 86(4): e26–e27.
18. Rizwan, T., Kothidar, A., Meghwani, H., Sharma, V., Shobhawat, R., Saini, R., Vaishnav, H. K., Singh, V., Pratap, M., Sihag, H., Kumar, S., Dey, J. K., and Dey, S. K. Comparative analysis of SARS-CoV-2 envelope viroporin mutations from COVID-19 deceased and surviving patients revealed implications on its ion-channel activities and correlation with patient mortality. Journal of Biomolecular Structure and Dynamics. 2022; 40(20): 10454–10469. https://doi.org/10.1080/07391102.2021.1944319
19. Jiang, Y., Liu, L., Manning, M., Bonahoom, M., Lotvola, A., Yang, Z., and Yang, Z.-Q. Structural analysis, virtual screening and molecular simulation to identify potential inhibitors targeting 2’-O-ribose methyltransferase of SARS-CoV-2 coronavirus. Journal of Biomolecular Structure and Dynamics. 2022; 40(3): 1331–1346. https://doi.org/10.1080/07391102.2020.1828172
20. Talevich, E., Invergo, B. M., Cock, P. J. A., and Chapman, B. A. Bio. Phylo: a unified toolkit for processing, analyzing and visualizing phylogenetic trees in Biopython. BMC Bioinformatics. 2012; 13: 1–9.
21. Batzoglou, S. The many faces of sequence alignment. Briefings in Bioinformatics. 2005; 6(1): 6–22.
22. Ryu, T.-W. Benchmarking of BioPerl, Perl, BioJava, Java, BioPython, and Python for primitive bioinformatics tasks and choosing a suitable language. International Journal of Contents. 2009; 5(2): 6–15.
23. Cock, P. J. A., Antao, T., Chang, J. T., Chapman, B. A., Cox, C. J., Dalke, A., Friedberg, I., Hamelryck, T., Kauff, F., and Wilczynski, B. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics. 2009; 25(11): 1422–1423.
24. Pearson, W. R. Using the FASTA program to search protein and DNA sequence databases. Computer Analysis of Sequence Data: Part I. 1994: 307–331.
25. Dayhoff, M., Schwartz, R., and Orcutt, B. 22 a model of evolutionary change in proteins. Atlas of Protein Sequence and Structure. 1978; 5: 345–352.
26. Cresci, S., Di Pietro, R., Petrocchi, M., Spognardi, A., and Tesconi, M. DNA-inspired online behavioral modeling and its application to spambot detection. IEEE Intelligent Systems. 2016; 31(5): 58–64.
27. Needleman, S. B., and Wunsch, C. D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology. 1970; 48(3): 443–453.
28. Purohit, S., Satapathy, S. C., Sibi Chakkaravarthy, S., and Zhang, Y.-D. Correlation-Based Analysis of COVID-19 Virus Genome Versus Other Fatal Virus Genomes. Arabian Journal for Science and Engineering. 2020: 1–13.
29. Jacobson, A. B., and Zuker, M. Structural analysis by energy dot plot of a large mRNA. Journal of Molecular Biology. 1993; 233(2): 261–269.
30. Piovesan, A., Pelleri, M. C., Antonaros, F., Strippoli, P., Caracausi, M., and Vitale, L. On the length, weight and GC content of the human genome. BMC Research Notes. 2019; 12(1): 1–7.
31. Karimi, K., Wuitchik, D. M., Oldach, M. J., and Vize, P. D. Distinguishing species using GC contents in mixed DNA or RNA sequences. Evolutionary Bioinformatics. 2018; 14: 1176934318788866.
32. Ghosh, A., and Nandy, A. Graphical representation and mathematical characterization of protein sequences and applications to viral proteins. Advances in Protein Chemistry and Structural Biology. 2011; 83: 1–42.
33. Yang, Y., Peng, F., Wang, R., Guan, K., Jiang, T., Xu, G., Sun, J., and Chang, C. The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. Journal of Autoimmunity. 2020; 109: 102434.
34. Randic, M., Zupan, J., and Balaban, A. T. Unique graphical representation of protein sequences based on nucleotide triplet codons. Chemical Physics Letters. 2004; 397(1–3): 247–252.
35. Richmond, T. J., and Davey, C. A. The structure of DNA in the nucleosome core. Nature. 2003; 423(6936): 145–150.
36. Chiaromonte, F., Yap, V. B., and Miller, W. Scoring pairwise genomic sequence alignments. In Biocomputing 2002: 115–126. World Scientific.
37. Poullet, M., and Orlando, L. Assessing DNA sequence alignment methods for characterizing ancient genomes and methylomes. Frontiers in Ecology and Evolution. 2020; 8: 105.
38. Mohammadi-Kambs, M., Hölz, K., Somoza, M. M., and Ott, A. Hamming distance as a concept in DNA molecular recognition. ACS Omega. 2017; 2(4): 1302–1308.
39. Gong, Y., Wen, G., Jiang, J., and Xie, F. Codon bias analysis may be insufficient for identifying host (s) of a novel virus. Journal of Medical Virology. 2020; 92(9): 1434.
40. Anderson, D. E., Sivalingam, V., Kang, A. E. Z., Ananthanarayanan, A., Arumugam, H., Jenkins, T. M., Hadjiat, Y., and Eggers, M. Povidone-iodine demonstrates rapid in vitro virucidal activity against SARS-CoV-2, the virus causing COVID-19 disease. Infectious Diseases and Therapy. 2020; 9(3): 669–675.
41. Gao, F., and Zhang, C.-T. GC-Profile: a web-based tool for visualizing and analyzing the variation of GC content in genomic sequences. Nucleic Acids Research. 2006; 34(suppl_2): W686–W691.
42. Li, Y., Yang, X., Wang, N., Wang, H., Yin, B., Yang, X., and Jiang, W. GC usage of SARS-CoV-2 genes might adapt to the environment of human lung expressed genes. Molecular Genetics and Genomics. 2020; 295(6): 1537–1546. https://doi.org/10.1007/s00438-020-01719-0
43. Shereen, M. A., Khan, S., Kazmi, A., Bashir, N., and Siddique, R. COVID-19 infection: Emergence, transmission, and characteristics of human coronaviruses. Journal of Advanced Research. 2020; 24: 91–98.
44. Wu, C., Chen, X., Cai, Y., Zhou, X., Xu, S., Huang, H., Zhang, L., Zhou, X., Du, C., and Zhang, Y. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Internal Medicine, 2020; 180(7): 934–943.