Author(s): Candra Irawan, Berna Elya, Muhammad Hanafi, Fadlina Chany Saputri

Email(s): berna.elya@farmasi.ui.ac.id

DOI: 10.52711/0974-360X.2025.00075   

Address: Candra Irawan1,2, Berna Elya1*, Muhammad Hanafi3,4, Fadlina Chany Saputri1
1Faculty of Pharmacy Universitas Indonesia, Depok, West Java 16424, Indonesia.
2Department of Food Nanotechnology, Politeknik AKA Bogor, Bogor, West Java 16154, Indonesia.
3Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovatioan Agency-BRIN, Kawasan Puspiptek, Tangerang Selatan 15134 Indonesia.
4Faculty of Pharmacy Universitas Pancasila, Jakarta Selatan 12640, Indonesia.
*Corresponding Author

Published In:   Volume - 18,      Issue - 2,     Year - 2025


ABSTRACT:
Background: Rhinachantus nasutus (L.) Kurz (Rnz) is a plant that has the potential to be an antioxidant as well as an anti-diabetic medication. Traditional medicine has used preparations made from the roots, stems, and leaves of Rnz to treat diabetes. Aim: This study aimed determine the antioxidant and anti-diabetic potential of Rnz leaf extract by inhibiting the activity of dipeptidyl peptidase IV (DPP IV). Method: Rnz leaf samples were extracted using Ultrasound-Assisted Extraction (UAE). Following that, the antioxidant capacity was determined by trapping 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reduction antioxidant power (FRAP), and its potential as an antidiabetic was determined by inhibiting DPP IV activity. Results: The extraction yield of ethanol from Rkz leaves using the UAE method was 8.36%. The IC50 and EC50 values for the antioxidant capacity determined using the DPPH and FRAP methods were 97.34 ± 0.07 mg/L and 8.69 ± 0.02 mg/L, respectively. In addition, ethanolic leaf extract has potential as an antidiabetic through the mechanism of inhibition of DPP IV activity with an inhibition value of 43.05 ± 1.2%. The determination of compounds in the ethanolic extract of Rnz leaves using UHPLC-MS/MS QToF succeeded in identifying 65 compounds, with several compounds reported to be active as antidiabetic. These compounds are 1,3,7-trihidroxy-6-methoxy-4,5-diisoprenylxanthone (9), palmitic acid (10), 3,5-di(ethylthio)isothiazole-4-carboxaide (12), 4,8-dihydroxy-6-methoxy-3-methyl-3,4-dihydro-1H-isochromen-1-one (15), glaucine (20), 5-isopropyl-3,8-dimethylazulene-1-carbaldehhyde 1-(4-nitrophenyl)hydrazone (21), 2,5-anhydro-6-[(2-chloro-5-ethoxybenzoyl)amino]-4,6-dideoxy-4-(4-phenyl-1-piperazinyl)-D-galactitol (27), 2-(4-methylphenyl)-4-phenyl-2,3-dihydro-1,5-benzothiazepine (30), 1-palmitoylglycerol (32), (2S)-2-({1-[(4-fluorophenyl)ethyl]indazole-3-carbonyl)amino)-3-methylbutanoic acid (43), and ethyl 2-[(6-oxo-6H-benzo[c]chromen-3-yl)oxy]acetate (45). Conclusion: the ethanolic extract of the leaves of Rnz from the UAE has the potential as a source of antioxidants and antidiabetics.


Cite this article:
Candra Irawan, Berna Elya, Muhammad Hanafi, Fadlina Chany Saputri. The Antioxidant and Anti-Diabetic Chemical Compounds in Rhinacanthus nasutus (L.) Kurz Leaf Extract Were Determined Using UHPLC-MS/MS QTOF. Research Journal of Pharmacy and Technology.2025;18(2):495-1. doi: 10.52711/0974-360X.2025.00075

Cite(Electronic):
Candra Irawan, Berna Elya, Muhammad Hanafi, Fadlina Chany Saputri. The Antioxidant and Anti-Diabetic Chemical Compounds in Rhinacanthus nasutus (L.) Kurz Leaf Extract Were Determined Using UHPLC-MS/MS QTOF. Research Journal of Pharmacy and Technology.2025;18(2):495-1. doi: 10.52711/0974-360X.2025.00075   Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-2-7


REFERENCES:
1.    Cho NH. Shaw JE. Karuranga S. Huang Y. da Rocha Fernandes JD. Ohlrogge AW. Malanda B. IDF Diabetes Atlas: Global Estimates of Diabetes Prevalence for 2017 and Projections for 2045. Diabetes Research and Clinical Practice. 2018; 138: 271-81. doi.org/10.1016/j.diabres.2018.02.023
2.    Kumari MS. Babu MK. Sulthana R. Srinivas M. Prasanthi C. Diabetes Mellitus: Present Status and Drug Therapy Updates. Research Journal of Pharmacy and Technology. 2014; 7(1): 84-94.
3.    Aphale P. Sharma D. To Study and Compare the Efficacy of LM Potency and Centesimal Potency of Homoeopathic Medicine Acid Phosphoricum in Management of Type-2 Diabetes Mellitus. Research Journal of Pharmacy and Technology. 2023; 16(4): 1689-4. doi.org/10.52711/0974-360X.2023.00277
4.    International Diabetes Federation. IDF Diabetes Atlas. 10th edition. 2021.
5.    Goyal RI. Jialal I. Type 2 Diabetes. 2023, StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK513253
6.    Galicia-Garcia U. Benito-Vicente A. Jebari S. Larrea-Sebal A. Siddiqi H. Uribe KB. Ostolaza H. Martín C. Pathophysiology of Type 2 Diabetes Mellitus. International Journal of Molecular Sciences. 2020; 21(17): 6275. doi.org/10.3390/ijms21176275
7.    Ormazabal V. Nair S. Elfeky O. Aguayo C. Saloon C. Zuñiga FA. Association Between Insulin Resistance and the Development of Cardiovascular Disease. Cardiovascular Diabetolog. 2018; 17(1): 122. doi.org/10.1186/s12933-018-0762-4
8.    Bhat N. Kumar A. Kumar P. Pai A. A Comprehensive Review on the Antidiabetic Activity of Oxadiazole Derivatives. Research Journal of Pharmacy and Technology. 2023; 16(6): 2771-2775. doi.org/10.52711/0974-360X.2023.00455
9.    Ankita. Bhardwaj K. Khurana N. Sutte A. Khatik G. Identification of Dipeptidyl Peptidase-4 (DPP-4) Inhibitors as Potential Antidiabetic Agents Using Molecular Docking Study. Research Journal of Pharmacy and Technology. 2020; 13(11): 5257-5262. doi.org/10.5958/0974-360X.2020.00919.1
10.    Parasuraman S. Thing GS. Dhanaraj SA. Polyherbal Formulation: Concept of Ayurveda.  Pharmacognosy Reviews. 2014; 8(16): 73-80. doi.org/10.4103/0973-7847.134229
11.    Yuan H. Ma Q. Cui H. Liu G. Zhao X. Li W. Piao G. How Can Synergism of Traditional Medicines Benefit from Network Pharmacology?. Molecules. 2017; 22(7): 1135. doi.org/10.3390/molecules22071135
12.    Grover JK. Yadav S. Vats V. Medicinal Plants of India with Anti-diabetic Potential. Journal of Ethnopharmacology. 2002; 81(1): 81-100. doi.org/10.1016/s0378-8741(02)00059-4
13.    Siripong P. Kanokmedakul K. Piyaviriyagul S. Yahuafai J. Chanpai R. Suchirawat S. Oku N. Antiproliferative Napthaquinone Esters from Rhinacanthus nasutus Kurz. Roots on Various Cancer Cells. Journal of Traditional of Medicines. 2006; 23: 166-172. doi.org/10.11339/jtm.23.166
14.    Shah MA. Khalil R. Ul-Haq Z. Panichayupakaranant P. α-Glucosidase Inhibitory Effect of Rhinacanthins-Rich Extract from Rhinacanthus nasutus Leaf and Synergistic Effect in Combination with Acarbose. Journal of Functional Foods. 2017; 36: 325-331. doi.org/10.1016/j.jff.2017.07.021
15.    Irawan C. Elya B. Hanafi M. Saputri FC. Application of Ultrasound-Assisted Extraction on the Stem Bark of Rhinachantus nasutus (L.) Kurz, Total Phenolic, and its Potential as Antioxidant and Inhibitor of Alpha-Glucosidase Enzyme Activity. Pharmacognosy Journal. 2021; 13(5): 1-7. doi.org/10.5530/pj.2021.13.164
16.    Irawan C. Elya B. Hanafi M. Saputri FC. Potential Ethanol Extract of Rhinachantus nasutus (L.) Kurz Stem Bark as Antioxidant and Inhibitor of Dipeptidyl Peptidase IV (DPP IV) Activity. Research Journal of Pharmacy and Technology. 2023; 16(3):1-6. doi.org/10.52711/0974-360X.2023.00197
17.    Kallepalli P. Annapurna MM. Separation, Identification and Quantification of Process Related Impurities and Stress Degradants of Olaparib by LC-ESI-Q-TOF-MS. Research Journal of Pharmacy and Technology. 2018; 11(8):3718-3726. doi.org/10.5958/0974-360X.2018.00682.0
18.    Abha S. Anchal C. Kumar SR. Amanpreet K. Isolation and Identification of Two Triterpenoids from Ethyl Acetate Extract of Bark of Boehmeria rugulosa. Research Journal of Pharmacy and Technology. 2021; 14(6):2919-2923. doi.org/10.5958/0974-360X.2018.00682.0
19.    Chaudhari BP. Daniel K. A Validated Ultra Performance Liquid Chromatography Method for Simultaneous Estimation of Diacerein and Aceclofenac in Bulk and Pharmaceutical Formulation. Research Journal of Pharmacy and Technology. 2022; 15(4):1467-1. doi.org/10.52711/0974-360X.2022.00243
20.    Kusnanda AJ. Dharma A. Armaini. Syafrizayanti. Chaidir Z. Carotenoid Profile of Freshwater Microalgae Mychonastes racemosus AUP1 and its Antioxidant Properties. Research Journal of Pharmacy and Technology. 2023; 16(1):404-410. doi.org/10.52711/0974-360X.2023.00069
21.    Mathew J. Neethu MV. RP-HPLC Hyphenated with ESI-Q-TOF–MS for the Detection of Potential Degradants in Dolutegravir. Research Journal of Pharmacy and Technology. 2023; 16(3):1012-6. doi.org/10.52711/0974-360X.2023.00169
22.    Cayman Chemical Company. DPP (IV) Inhibitor Screening Assay Kit. 2017; Cayman Chemical Company: AnnArbor, MI, USA.
23.    Jun M. Fu HY. Hong J. Wan X. Yang CS. Ho CT. Comparison of Antioxidant Activities of Isoflavones from Kudzu Root (Pueraria lobate Ohwi). Journal of Food Science. 2006; 68(6):2117-2122. doi.org/10.1111/j.1365-2621.2003.tb07029.x
24.    Santos CMM. Freitas M. Fernandes E. A Comprehensive Review on Xanthone Derivatives as Alpha-Glucosidase Inhibitors. European Journal of Medicinal Chemistry. 2018; 5(157):1460-1479. doi.org/10.1016/j.ejmech.2018.07.073
25.    Petacci F. Freitas SS. Brunetti IL. Khalil NM. Inhibition of Peroxidase Activity and Scavenging of Reactive Oxygen Species by Astilbin Isolated from Dimorphandra mollis (Fabaceae, Caesalpinioideae). Biological Research. 2010; 43(1): 63-74.
26.    Chigurupati S. AlGobaisy YK. Alkhalifah B. Alhowail A. Bhatia S. Das S. Vijayabalan S. Antioxdiant and Antidiabetic Potentials of Curcubita pepo Leaves Extract from the Gulp Region. Rasayan Journal of Chemistry. 2021; 14(4): 2357-2362. doi.org/doi.org/10.31788/RJC.2021.1446455
27.    Olugbuyiro JAO. Banwo AS. Adeyemi AO. Taiwo OS. Akintokun OA. Phytochemical Constituents, Antioxidant and Antimicrobial Activities of Eugenia uniflora linn. Leaf. Rasayan Journal of Chemistry. 2018; 11(2): 798-805. doi.org/10.31788/RJC.2018.1121823
28.    Manuja R. Sachdeva S. Jain A. Chaudhary J. A Comprehensive Review on Biological Activities of p-Hydroxy Benzoic Acid and its Derivatives. International Journal of Pharmaceutical Sciences Review and Research. 2013; 22(2): 109-115.
29.    Kostova I. Bhatia S. Grigorov P. Balkansky S. Parmar VS. Prasad AK. Saso L. Coumarins as Antioxidants. Current Medicinal Chemistry. 2011; 18(25): 3929-3951. doi.org/10.2174/092986711803414395
30.    Farooq S. Mazhar A. Ghouri A. Ul-Haq I. Ullah N. One-Pot Multicomponent Synthesis and Bioevaluation of Tetrahydroquinoline Derivatives as Potential Antioxidants, α-Amylase Enzyme Inhibitors, Anti-Cancerous and Anti-Inflammatory Agents. Molecules. 2020; 25(11): 1-28. doi.org/10.3390/molecules25112710
31.    Ma C. Wang J. Chu H. Zhang X. Wang Z. Wang H. Li G. Purification and Characterization of Aporphine Alkaloids from Leaves of Nelumbo nucifera Gaertn and Their Effects on Glucose Consumption in 3T3-L1 Adipocytes. International Journal of Molecular Sciences. 2014; 15(3): 3481-3493. doi.org/10.3390/ijms15033481
32.    Atalay S. Karpowicz IJ. Skrzydlewska E. Antioxidative and Anti-inflammatory Properties of Cannabidiol. Antioxidants. 2020; 9(21):1-20. doi.org/10.3390/antiox9010021
33.    Masnon FF. Hassan NPS. Ahmad F. Aporphine Alkaloids of Cinnamomum mollissimum and Their Bioactivities. Natural Product Communications. 2014; 9(1):31-32.
34.    Hussein MA. El-Gizawy HAE. Gobba NAEK. Mosaad YO. Synthesis of Cinnamyl and Caffeoyl Derivatives of Cucurbitacin-Eglycoside Isolated from Citrullus colocynthis Fruits and Their Structures Antioxidant and Anti-inflammatory Activities Relationship. Current Pharmaceutical Biotechnology. 2017; 18(8): 677-693. doi.org/10.2174/1389201018666171004144615
35.    Gomes CL. Sales VAW. Melo CG. Silva RMF. Nishimura RHV. Rolim LA. Neto PJR. Beta-Lapachone: Natural Occurrence, Physicochemical Properties, Biological Activities, Toxicity and Synthesis. Phytochemistry. 2021; 186(112713). doi.org/10.1016/j.phytochem.2021.112713
36.    Amin MS. Saputri FC. Mun`im A. Inhibition of Dipeptidyl Peptidase 4 (DPP IV) Activity by Some Indonesia Edible Plants. Pharmacognosy Journal. 2019; 11(2): 231-236. doi.org/10.5530/pj.2019.11.36
37.    Ekayanti M. Sauriasari R. Elya B. Dipeptidyl Peptidase IV Inhibitory Activity of Fraction from White Tea Ethanolic Extract (Camellia sinensis (L.) Kuntze) ex Vivo. Pharmacognosy Journal. 2018; 10(1): 190-193. doi.org/10.5530/pj.2018.1.32
38.    Savych A. Marchyhshyn S. Basaraba R. Determination of Fatty Acid Composition Content in the Herbal Antidiabetic Collections. Pharmacia. 2020; 67(3): 153-159. doi.org/10.3897/pharmacia.67.e51812
39.    Hanafi. Irawan C. Rochaeni H. Sulistiawaty L. Roziafanto AN. Supriyono. Phytochemical Screening, LC-MC Studies and Antidiabetic Potential of Methanol Extracts of Seed Shells of Archiendron bubalinum (Jack) I.C Nielsen (Julang Jaling) from Lampung, Indonesia. Pharmacognosy Journal. 2018; 10(6): s77-s82. doi.org/10.5530/pj.2018.6s.15
40.    Liu Q. Kim SB. Ahn JH. Hwang BY. Kim SY. Lee MK. Anthraquinones from Morinda officinalis Roots Enhance Adipocyte Differentiation in 3T3-L1 Cells. Natural Product Research. 2012; 26(18): 1750-1754. doi.org/10.1080/14786419.2011.608676
41.    Ernawati T. Radji M. Hanafi M. Mun’im A. Yanuar A. Indonesia. Cinnamic Acid Derivatives as α-Glucosidase Inhibitor Agents. Indonesian Journal of Chemistry. 2017; 17(1): 151-160. doi.org/10.22146/ijc.23572
42.    Kumar S. Dubey B. A Review on Emerging Benzothiazoles: Biological Aspects. Journal of Drug Delivery and Therapeutics. 2022; 12(4-S): 270-274. doi.org/10.22270/jddt.v12i4-s.5549
43.    Liang C. Hao F. Yao X. Qiu Y. Liu L. Wang S. Yu C. Song Z. Bao Y et al Hypericin Maintians PDX1 Expression via the Erk Pathway and Protects Islet β-Cells Against Glucotoxicity and Lipotoxicity. International Journal of Biological Sciences. 2019; 15(7): 1472-1487. doi.org/10.7150/ijbs.33817
44.    Liang C. Li Y. Bai M. Huang Y. Yang H. Liu L. Wang S. Yu C et al Hypericin Attenuates Nonalcoholic Fatty Liver Disease and Abnormal Lipid Metabolism via the PKA-Mediated AMPK Signaling Pathway In vitro and In vivo. Pharmacological Research. 2020; 153(104657). doi.org/10.1016/j.phrs.2020.104657

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available