Author(s): Pramod Shridhar Salve, Aditya Ashok Pohankar, Steffi George, Jay Rajendra Gadge

Email(s): pramodsalve77@yahoo.com , aadityapohankar@gmail.com , georgesteffi7@gmail.com , jaygadge7107@gmail.com

DOI: 10.52711/0974-360X.2025.00132   

Address: Pramod Shridhar Salve, Aditya Ashok Pohankar, Steffi George, Jay Rajendra Gadge
Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University,
Mahatma Jyotiba Fuley Shaikshanik Parisar, Amravati Road, Nagpur - 440033, Maharashtra, India.
*Corresponding Author

Published In:   Volume - 18,      Issue - 2,     Year - 2025


ABSTRACT:
Alzheimer’s disease (AD) is an illness that give rise to the degeneration of the neurons. It is termed after Dr. Alois Alzheimer and is expressed by memory impairment and cognitive dysfunction. Major challenges of the conventional therapies were barriers like blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB). Cerebrospinal fluid (CSF) is generated by specialised ependymal cells in the choroid plexus (CP) that create the blood-CSF barrier (BCSFB). There are tight junctions in BBB that limits paracellular diffusion of solutes. Moreover, drugs of Acetylcholine (AChE) inhibitors like Tacrine, Donepezil, Galantine, Rivastigmine and N-Methyl-D-Aspartate (NMDA) antagonist like Memantine have gastrointestinal effects such as nausea, vomiting, diarrhoea and other common adverse effects. NMDA receptor-mediated excitatory glutamatergic neurotransmission is essential for neuronal survival and synaptic development. On the other hand, increased NMDAR activity increases cell death and excitotoxicity, which may be a contributing factor to the neurodegeneration associated with Alzheimer's disease (AD). The ever-increasing statistics of AD stating a rise up of 1 crore cases annually all over the world with its risk factors have caused a need for preventive measures and safe methods to treat the disease. The involvement of free radicals and inflammation in the aetiology of Alzheimer's disease suggests that antioxidant and anti-inflammatory medicines might have a therapeutic role. Herbal medications, which are based on a richness of traditional knowledge, may be useful because they can address AD pathogenesis at numerous places, including the cellular and molecular levels. It has been postulated that they exert their protective benefits against cognitive impairment through generic antioxidant and anti-inflammatory activities, as well as particular actions on AChE, ß-amyloid fibril production and tau aggregation. This review discusses the various natural and herbal alternatives such as Melissa officinalis, Evolvus alsinoides, Bacopa monnieri, Celastrus paniculatus, Centella asiatica, etc. prepared using nanotechnologies (liposomes, niosome, phytosomes, solid lipid nanoparticle) that have been found to show rapid and efficient absorption. This makes it a promising plan for the future aspects and for the upcoming improvements posing least toxicity and harm to the human health.


Cite this article:
Pramod Shridhar Salve, Aditya Ashok Pohankar, Steffi George, Jay Rajendra Gadge. Alzheimer’s Disease: A Study on Natural and Herbal Treatment. Research Journal of Pharmacy and Technology.2025;18(2):898-6. doi: 10.52711/0974-360X.2025.00132

Cite(Electronic):
Pramod Shridhar Salve, Aditya Ashok Pohankar, Steffi George, Jay Rajendra Gadge. Alzheimer’s Disease: A Study on Natural and Herbal Treatment. Research Journal of Pharmacy and Technology.2025;18(2):898-6. doi: 10.52711/0974-360X.2025.00132   Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-2-64


REFERENCES:
1.    National Institute on Aging. Alzheimer’s Disease Fact Sheet [Internet]. NIH. 2023 [cited 2023 Jul 7]. Available from: https://www.nia.nih.gov/health/alzheimers-disease-fact-sheet
2.    Lahiri D, Maloney B. Lahiri K. Debomoy and Maloney Bryan, Dedication of the Third Issue of ‘Current Alzheimer Research’ to President Ronald Reagan (1911-2004), Current Alzheimer Research 2004; 1(3). https://dx.doi.org/10.2174/1567205043332153. Curr Alzheimer Res [Internet]. 2004;1:iii–iii. Available from: http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1567-2050&volume=1&issue=3&spage=iii
3.    Justin A, Manisha C, Choephel T, Thomas P, Jeyarani V, Banerjee S, et al. Recent advances in the treatment of alzheimer’s disease: An immunotherapeutic approach. Res J Pharm Technol. 2020; 13: 2057–62.
4.    National Institute on Aging. What Is Alzheimer’s Disease? [Internet]. NIH. 2021 [cited 2023 Jul 7]. Available from: https://www.nia.nih.gov/health/what-alzheimers-disease
5.    Caspersen C, Wang N, Yao J, Sosunov A, Chen X, Lustbader JW, et al. Mitochondrial A: a potential focal point for neuronal metabolic dysfunction in Alzheimer ’ s disease. :2040–1.
6.    Chen X, Yan S Du. Critical Review Mitochondrial A b: A Potential Cause of Metabolic Dysfunction in Alzheimer’ s Disease. 2006; 58: 686–94.
7.    Velraj M, Lavaniya N. Alzheimer disease and a potential role of herbs-A review. Res J Pharm Technol [Internet]. 2018; 11: 2695. Available from: http://www.indianjournals.com/ijor.aspx?target=ijor:rjpt&volume=11&issue=6&article=099
8.    Bhushan I, Kour M, Kour G, Gupta S, Sharma S, Yadav A. Annals of Biotechnology Alzheimer’ s disease: Causes and treatment – A review. 2018;1.
9.    Povova J, Ambroz P, Bar M, Pavukova V, Sery O, Tomaskova H, et al. Epidemiological of and risk factors for Alzheimer ‘s disease: A review. 2012;156:108–14.
10.    Vinícius M, Silva F, Mello C De, Loures G, Carlos L, Alves V, et al. Alzheimer ’ s disease: risk factors and potentially protective measures. 2019; 1–11.
11.    Hanson LR, Ii WHF. Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. 2008; 4: 1–4.
12.    Mayeux R, Stern Y. Epidemiology of Alzheimer Disease. 2012; 1–18.
13.    Carbone I, Lazzarotto T, Ianni M, Porcellini E, Forti P, Masliah E, et al. Herpes virus in alzheimer’s disease: Relation to progression of the disease. Neurobiol Aging [Internet]. 2014; 35: 122–9. Available from: http://dx.doi.org/10.1016/j.neurobiolaging.2013.06.024
14.    Allnutt MA, Jacobson S. Do herpesviruses play a role in Alzheimer’s disease pathogenesis? Drug Discov Today Dis Model [Internet]. 2020; 32: 21–6. Available from: https://doi.org/10.1016/j.ddmod.2019.10.006
15.    Jamieson GA, Maitland NJ, Wilcock GK, Craske J, Itzhaki RF. Latent herpes simplex virus type 1 in normal and Alzheimer’s disease brains. J Med Virol. 1991; 33: 224–7.
16.    Bruno F, Abondio P, Bruno R, Ceraudo L, Paparazzo E, Citrigno L, et al. Alzheimer’s disease as a viral disease: Revisiting the infectious hypothesis. Ageing Res Rev [Internet]. 2023; 91: 102068. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1568163723002271
17.    Armstrong RA. The molecular biology of senile plaques and neurofibrillary tangles in Alzheimer ’ s disease Senile plaques. 2009; 289–99.
18.    Patil S V., Patil VK, Patil PA. Review on herbal medicines of alzheimer’s disease. Asian J Res Pharm Sci [Internet]. 2020; 10: 171. Available from: http://www.indianjournals.com/ijor.aspx?target=ijor:ajrps&volume=10&issue=3&article=010
19.    Breijyeh Z, Karaman R. Comprehensive Review on Alzheimer ’ s Disease: 2020;
20.    Röhr D, Boon BDC, Schuler M, Kremer K, Hoozemans JJM, Bouwman FH, et al. Label ‑ free vibrational imaging of different Aβ plaque types in Alzheimer ’ s disease reveals sequential events in plaque development. Acta Neuropathol Commun [Internet]. 2020; 1–13. Available from: https://doi.org/10.1186/s40478-020-01091-5
21.    Kumar A, Sidhu J, Goyal A, et al. Alzheimer Disease. [Updated 2022 Jun 5]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK499922/.
22.    Chen G fang, Xu T hai, Yan Y, Zhou Y ren, Jiang Y, Melcher K, et al. Amyloid beta : structure , biology and structure-based therapeutic development. Nat Publ Gr [Internet]. 2017;38:1205–35. Available from: http://dx.doi.org/10.1038/aps.2017.28
23.    Singh SK, Srivastav S, Yadav AK, Srikrishna S, Perry G. Overview of Alzheimer’ s Disease and Some Therapeutic Approaches Targeting A ? by Using Several Synthetic and Herbal Compounds. 2016;2016.
24.    Abduljawad AA, Elawad MA, Elnour M, Elkhalifa M, Ahmed A, Adam A, et al. Alzheimer ’ s Disease as a Major Public Health Concern: Role of Dietary Saponins in Mitigating Neurodegenerative Disorders and Their Underlying Mechanisms. 2022;
25.    Agarwal M, Alam MR, Haider MK, Malik Z. Alzheimer ’ s Disease : An Overview of Major Hypotheses and Therapeutic Options in Nanotechnology. 2021; 1–18.
26.    Tamilselvan M, Tamilanban T, Chitra V. Unfolding Remedial Targets for Alzheimer’s Disease. Res J Pharm Technol [Internet]. 2020; 13: 3021. Available from: http://www.indianjournals.com/ijor.aspx?target=ijor:rjpt&volume=13&issue=6&article=087
27.    Dhinakaran S, Tamilanban T, Chitra V. Targets for Alzheimer’s Disease. Res J Pharm Technol [Internet]. 2019; 12: 3073. Available from: http://www.indianjournals.com/ijor.aspx?target=ijor:rjpt&volume=12&issue=6&article=084
28.    Wang R, Reddy PH. Role of Glutamate and NMDA Receptors in Alzheimer’s Disease. J Alzheimer’s Dis [Internet]. 2017; 57: 1041–8. Available from: https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/JAD-160763
29.    Jadhav RP, Kengar MD, Narule O V., Koli VW, Kumbhar SB. A Review on Alzheimer’s Disease (AD) and its Herbal Treatment of Alzheimer’s Disease. Asian J Res Pharm Sci [Internet]. 2019; 9: 112. Available from: http://www.indianjournals.com/ijor.aspx?target=ijor:ajrps&volume=9&issue=2&article=007
30.    Vaz M, Silvestre S. Alzheimer’s disease: Recent treatment strategies. Eur J Pharmacol [Internet]. 2020; 887: 173554. Available from: https://doi.org/10.1016/j.ejphar.2020.173554
31.    Alzheimer’s Disease [Internet]. Standford medicine health care. [cited 2023 Nov 14]. Available from: https://stanfordhealthcare.org/medical-conditions/brain-and-nerves/alzheimers-disease/prevention.html
32.    Nagori K, Nakhate KT, Yadav K, Ajazuddin, Pradhan M. Unlocking the Therapeutic Potential of Medicinal Plants for Alzheimer’s Disease: Preclinical to Clinical Trial Insights. Futur Pharmacol [Internet]. 2023; 3: 877–907. Available from: https://www.mdpi.com/2673-9879/3/4/53
33.    Potbhare MS, Barik R, Khobragade DS. Management of Alzheimer’s Disease: A Review of Herbal Drugs Having Potential Pharmacological and Therapeutic Activity. J Young Pharm [Internet]. 2023; 15: 13–30. Available from: https://jyoungpharm.org/article/6384
34.    Miraj S, Rafieian-Kopaei, Kiani S. Melissa officinalis L: A Review Study With an Antioxidant Prospective. J Evidence-Based Complement Altern Med. 2017; 22: 385–94.
35.    Mahboubi M, Taghizadeh M, Talaei SA, Mehdi S, Firozeh T, Rashidi AA, et al. Combined Administration of Melissa officinalis and Boswellia serrata Extracts in an Animal Model of Memory. 2016;10.
36.    Shal B, Ding W, Ali H, Kim YS, Khan S. Anti-neuroinflammatory Potential of Natural Products in Attenuation of Alzheimer ’ s Disease. 2018;9.
37.    Akhondzadeh S, Noroozian M, Mohammadi M, Ohadinia S, Jamshidi AH, Khani M. Melissa officinalis. 2003;863–6.
38.    Beheshti S, Shahmoradi B. Therapeutic effect of Melissa officinalis in an amyloid-β rat model of Alzheimer ’ s disease. 2018; 7: 193–9.
39.    Soodi M, Naghdi N, Hajimehdipoor H, Choopani S, Sahraei E. Memory-improving activity of Melissa officinalis extract in naïve and scopolamine-treated rats. 2014; 9: 107–14.
40.    Kathirvel B, Kalibulla SI, Shanmugam V, Arumugam VA. A review on the pharmacological properties of Evolvulus alsinoides ( Linn ). 2021;153–60.
41.    Sujayil TK, Dhanaraj TS, Evolvulus K. Phytochemicals and Elemental Analysis of Evolvulus Alsinoides Leaf Extract. 2016;
42.    Mettupalayam P, Sundaramoorthy K, Packiam KK. In vitro enzyme inhibitory and cytotoxic studies with Evolvulus alsinoides ( Linn .) Linn . Leaf extract : a plant from Ayurveda recognized as Dasapushpam for the management of Alzheimer’ s disease and diabetes mellitus. 2020; 1–12.
43.    Yellamma K. System with Reference to Alzheimer’ S DISEASE. 2017; 8: 2090–9.
44.    Nahata A, Patil UK, Dixit VK. Effect of Evolvulus alsinoides Linn . on Learning Behavior and Memory Enhancement. 2009;
45.    Mehla J, Pahuja M, Dethe SM, Agarwal A, Kumar Y. Neurochemistry International Amelioration of intracerebroventricular streptozotocin induced cognitive impairment by Evolvulus alsinoides in rats: In vitro and in vivo evidence. Neurochem Int [Internet]. 2012; 61: 1052–64. Available from: http://dx.doi.org/10.1016/j.neuint.2012.07.022
46.    Bhandari P, Kumar N, Singh B, Kaul VK. Cucurbitacins from Bacopa monnieri. Phytochemistry. 2007; 68: 1248–54.
47.    Limpeanchob N, Jaipan S, Rattanakaruna S, Phrompittayarat W, Ingkaninan K. Neuroprotective effect of Bacopa monnieri on beta-amyloid-induced cell death in primary cortical culture. J Ethnopharmacol. 2008; 120: 112–7.
48.    Dubey T, Kushwaha P, Thulasiram HV, Chandrashekar M, Chinnathambi S. Bacopa monnieri reduces Tau aggregation and Tau-mediated toxicity in cells. Int J Biol Macromol [Internet]. 2023; 234: 123171. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0141813023000399
49.    Uabundit N, Wattanathorn J, Mucimapura S, Ingkaninan K. Cognitive enhancement and neuroprotective effects of Bacopa monnieri in Alzheimer’s disease model. J Ethnopharmacol. 2010; 127: 26–31.
50.    Saini N, Singh D, Sandhir R. Neuroprotective effects of Bacopa monnieri in experimental model of dementia. Neurochem Res. 2012; 37: 1928–37.
51.    Dwivedi V, Maurya H. A Comprehensive Overview of Celastrus paniculatus Seed Oil Intended for the Management of Human Ailments. Indian J Pharm Biol Res. 2018; 6: 37–42.
52.    Choudhary A, Soni P. Pharmacological Activities of Celastrus paniculatus Willd.: A Review. Int J Pharm Sci Rev Res. 2021; 69: 139–44.
53.    Bhagya V, Christofer T, Shankaranarayana Rao B. Neuroprotective effect of Celastrus paniculatus on chronic stress-induced cognitive impairment. Indian J Pharmacol [Internet]. 2016; 48: 687. Available from: http://www.ijp-online.com/text.asp?2016/48/6/687/194853
54.    Gattu M, Boss KL, Terry A V., Buccafusco JJ. Reversal of scopolamine-induced deficits in navigational memory performance by the seed oil of Celastrus paniculatus. Pharmacol Biochem Behav. 1997; 57: 793–9.
55.    Jadhav K, Marathe P, Rege N, Raut S, Parekar R. Effect of Jyotiṣmatī seed oil on spatial and fear memory using scopolamine induced amnesia in mice. Anc Sci Life [Internet]. 2015; 34: 130. Available from: http://www.ancientscienceoflife.org/text.asp?2015/34/3/130/157149
56.    Bhanumathy M, Harish MS, Shivaprasad HN, Sushma G. Nootropic activity of Celastrus paniculatus seed. Pharm Biol. 2010;48:324–7.
57.    Bylka W, Znajdek-Awiżeń P, Studzińska-Sroka E, Dańczak-Pazdrowska A, Brzezińska M. Centella asiatica in Dermatology: An Overview. Phyther Res [Internet]. 2014; 28: 1117–24. Available from: https://onlinelibrary.wiley.com/doi/10.1002/ptr.5110
58.    CU ON, FU I, J A, OJ P, PH W. Nutrient and Phytochemical Composition of Centella asiatica Leaves. Med Aromat Plants. 2020; 9: 1–7.
59.    Gohil K, Patel J, Gajjar A. Pharmacological review on Centella asiatica: A potential herbal cure-all. Indian J Pharm Sci [Internet]. 2010; 72: 546. Available from: http://www.ijpsonline.com/text.asp?2010/72/5/546/78519
60.    Sudha R, Sukumaran SK. Anti-Oxidants used for the Treatment of Alzheimer Disease. Res J Pharm Technol [Internet]. 2020; 13: 475. Available from: http://www.indianjournals.com/ijor.aspx?target=ijor:rjpt&volume=13&issue=1&article=092
61.    Veerendra Kumar M., Gupta Y. Effect of different extracts of Centella asiatica on cognition and markers of oxidative stress in rats. J Ethnopharmacol [Internet]. 2002; 79: 253–60. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378874101003944
62.    Wattanathorn J, Mator L, Muchimapura S, Tongun T, Pasuriwong O, Piyawatkul N, et al. Positive modulation of cognition and mood in the healthy elderly volunteer following the administration of Centella asiatica. J Ethnopharmacol [Internet]. 2008; 116: 325–32. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378874107006411
63.    Mohandas Rao KG, Muddanna Rao S, Gurumadhva Rao S. Centella asiatica (L.) Leaf Extract Treatment During the Growth Spurt Period Enhances Hippocampal CA3 Neuronal Dendritic Arborization in Rats. Evidence-Based Complement Altern Med [Internet]. 2006; 3: 349–57. Available from: http://www.hindawi.com/journals/ecam/2006/627102/abs/
64.    RAO S, CHETANA M, UMADEVI P. Centella asiatica treatment during postnatal period enhances learning and memory in mice. Physiol Behav [Internet]. 2005; 86: 449–57. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0031938405002830
65.    Lohan S, Raza K, Mehta SK, Bhatti GK, Saini S, Singh B. Anti-Alzheimer’s potential of berberine using surface decorated multi-walled carbon nanotubes: A preclinical evidence. Int J Pharm [Internet]. 2017; 530: 263–78. Available from: http://dx.doi.org/10.1016/j.ijpharm.2017.07.080
66.    Rao R V, Descamps O, John V, Bredesen DE. Ayurvedic medicinal plants for Alzheimer ’ s disease : a review. 2012; 1–9.



Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available