Author(s):
Jitendra Patel, Hare Krishna Roy, Deepak S. Khobragade, Anil M. Pethe, Surendra Agrawal, G. Shiva Kumar, Gatadi Srikanth, Rukmani Patel, Vijay Patel
Email(s):
jitendra.pharmacy@dmiher.edu.in
DOI:
10.52711/0974-360X.2025.00127
Address:
Jitendra Patel1*, Hare Krishna Roy2*, Deepak S. Khobragade1, Anil M. Pethe1, Surendra Agrawal1, G. Shiva Kumar3, Gatadi Srikanth3, Rukmani Patel4, Vijay Patel5
1Department of Pharmacognosy, Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education, (Deemed to be University), Sawangi (Meghe), Wardha 442001 (MS), India.
2Department of Pharmaceutics, Nirmala College of Pharmacy, Mangalagiri, Guntur, Andhra Pradesh 522503, India.
3Gitam School of Pharmacy, GITAM Deemed to be university, Hyderabad (TS).
4Department of Chemistry, Bharati University, Durg (CG).
5Ram Sharan Roy College of Pharmacy, Panapur, Makkanpur, Vaishali, Bihar, 844505.
*Corresponding Author
Published In:
Volume - 18,
Issue - 2,
Year - 2025
ABSTRACT:
Nanoemulsion of bark ethanolic extract of Terminalia coriacea (T. coriacea) was investigated for in vitro anthelminthic activity on helminth parasites from sheep and earthworms. The goal of this investigation was to access the anthelmintic effects of nanoemulsion having bark extract by ethanol, of T. coriacea against Haemonchus contortus (H. contortus) and Pheretima posthuma (P. posthuma) and evaluate phytoconstituents. Nanoemulsion was formulated with ethanolic bark extract of T. coriacea and characterization, particle size, zeta potential, morphological and rheological evaluations performed. Ethno-pharmacological information suggested T. coriacea as an excellent alternative for supervising nematodes of the gastrointestinal tract due to its anthelmintic properties. The ethanolic extract was subjected to liquid chromatography and mass spectroscopy (LCMS) analysis to screen the responsible phytoconstituents for the efficacy. The results show a potential role of the nanoemulsion in the decline in hatchability of eggs, the development of larvae in L1 to L3 (infective stage) and earthworm. At maximum concentration, T. coriacea nanoemulsion (TcNano) revealed 95.36% egg hatch test (EHT) and 88.56% larval motility test (LMT), whereas paralysis time 50.16±0.5 and death time 70.04±0.5 minutes in movement worms. In the motility of mature worm test, three concentrations of 10, 50, and 100 mg/ml of nanoemulsion were investigated against P. Posthuma. Albendazole was taken as the standard reference at 10 mg/ml concentration, while the control was normal saline. We have devised a significant and potentially effective alternative to anthelmintics for the control of parasites in accordance with these findings. The LCMS analysis revealed the major chemical moiety such as Glyceraldehyde, Phenylcoumarin, Cucurbitacin E, Norbuprenorphine-d3, Quinazolinamine, Triflupromazine, Flavanone, Mephenytoin, Methyl coumarin acetate, and Serpentine at significant quantities. Furthermore, these findings endorse the traditional claim of T. coriacea as anthelmintic and the therapeutic potential of its constituents.
Graphical Abstract
Cite this article:
Jitendra Patel, Hare Krishna Roy, Deepak S. Khobragade, Anil M. Pethe, Surendra Agrawal, G. Shiva Kumar, Gatadi Srikanth, Rukmani Patel, Vijay Patel. Exploring the in vitro Efficacy of Terminalia coriacea Nanoemulsion against Haemonchus contortus and Pheretima posthuma: LCMS Profiling of Ethanolic Bark Extract Impact. Research Journal of Pharmacy and Technology.2025;18(2):863-2. doi: 10.52711/0974-360X.2025.00127
Cite(Electronic):
Jitendra Patel, Hare Krishna Roy, Deepak S. Khobragade, Anil M. Pethe, Surendra Agrawal, G. Shiva Kumar, Gatadi Srikanth, Rukmani Patel, Vijay Patel. Exploring the in vitro Efficacy of Terminalia coriacea Nanoemulsion against Haemonchus contortus and Pheretima posthuma: LCMS Profiling of Ethanolic Bark Extract Impact. Research Journal of Pharmacy and Technology.2025;18(2):863-2. doi: 10.52711/0974-360X.2025.00127 Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-2-59
9. REFERENCES:
1. Cock IE, Cheesman M. Plants of the genus Terminalia: Phytochemical and antioxidant profiles, proliferation, and cancer. In: Cancer: Oxidative Stress and Dietary Antioxidants, 2021; 1: 495-502. doi: 10.1016/B978-0-12-819547-5.00044-4.
2. Amalraj A, Gopi S. Medicinal properties of Terminalia arjuna (Roxb.) Wight and Arn.: A review. Vol. 7, Journal of Traditional and Complementary Medicine, 2017; 7(1): 65-78. doi: https://doi.org/10.1016/j.jtcme.2016.02.003.
3. Mani V, Sajid S, Rabbani SI, Alqasir AS, Alharbi HA, Alshumaym A. Anxiolytic-like and antidepressant-like effects of ethanol extract of Terminalia chebula in mice. J Tradit Complement Med, 2021; 11(6): 493–502. doi: https://doi.org/10.1016/j.jtcme.2021.04.003
4. Kwandee P, Somnuk S, Wanikorn B, Nakphaichit M, Tunsagool P. Efficacy of Triphala extracts on the changes of obese fecal microbiome and metabolome in the human gut model. J Tradit Complement Med, 2023; 13(2): 207-217. doi: https://doi.org/10.1016/j.jtcme.2023.02.011.
5. Mann A, Yahaya Y, Banso A, John F. Phytochemical and antimicrobial activity of Terminalia avicennioides extracts against some bacteria pathogens associated with patients suffering from complicated respiratory tract diseases. Vol. 2, Journal of Medicinal Plants Research. 2008; 1; 2(5): 094-7.
6. John K. Estimates of genetic parameters and character association in finger millet (Eleusine coracana Gaertin). Agricultural Science Digest. 2007; 27(2): 302-306.
7. Pasha SK KSPSKSSP,. Anti-epileptic activity of methanolic extract of Terminalia coriacea (Roxb.) Wight and Arn in rats. . J Adv Pharm Sci . 2013; 13(2): 502–10.
8. Khan SA JMZZMNRMKM. Wound healing potential of leathery murdah, Terminalia coriacea (Roxb.) Wight and Arn. Phytopharmacology. 2012; 3: 158–68.
9. Ali Khan MS, Ahmed N, Misbah, Arifuddin M, Zakaria ZA, Al-Sanea MM, et al. Anti-nociceptive mechanisms of flavonoids-rich methanolic extract from Terminalia coriacea (Roxb.) Wight and Arn. leaves. Food and Chemical Toxicology. 2018; 115: 523–531. doi: https://doi.org/10.1016/j.fct.2018.03.021
10. Patel J, Kumar GS, Patel VK. Antibacterial Activity of Ethanolic Extracts of Terminalia coriacea (Roxb.) Wight and Arn. Leaves against Foodborne Pathogens. Asian Journal of Chemistry. 2023; 35(9): 2157–2160. doi: https://doi.org/10.14233/ajchem.2023.28095
11. Patel J, Reddy AV, Kumar GS, Satyasai D, Bajari B, Nagarjuna V. Hepatoprotective activity of methanolic extract of Terminalia coriacea leaves. Res J Pharm Technol [Internet]. 2017; 10(5): 1313. doi: http://www.indianjournals.com/ijor.aspx?target=ijor:rjpt&volume=10&issue=5&article=007
12. Nagesh.D, Vanita Das.V, "Prevelance of Helminth Parasites in Sheep of Medak District, Telangana India", International Journal of Science and Research (IJSR), 2016; 5(5): doi: https://www.doi.org/10.21275/NOV163834
13. Sati P, Dhyani P, Bhatt ID, Pandey A. Ginkgo biloba flavonoid glycosides in antimicrobial perspective with reference to extraction method. J Tradit Complement Med. 2019;9(1): 15-23. doi: https://doi.org/10.1016/j.jtcme.2017.10.003
14. Rajesh Y, Khan NM, Raziq Shaikh A, Mane VS, Daware G, Dabhade G. Investigation of geranium oil extraction performance by using soxhlet extraction. In: Materials Today: Proceedings. 2023; 8: doi: 10.1016/j.matpr.2022.07.276
15. Subramanian R, Subbramaniyan P, Noorul Ameen J, Raj V. Double bypasses soxhlet apparatus for extraction of piperine from Piper nigrum. Arabian Journal of Chemistry. 2016;9: S537-S540. doi: https://doi.org/10.1016/j.arabjc.2011.06.022
16. Dal Mas J, Zermiani T, Thiesen LC, Silveira JLM, Da Silva KABS, De Souza MM, et al. Nanoemulsion as a carrier to improve the topical anti-inflammatory activity of stem bark extract of Rapanea ferruginea. Int J Nanomedicine. 2016; 11: 4495–4507. Doi: https://doi.org/10.2147/IJN.S110486
17. Hassanshahian M, Saadatfar A, Masoumipour F. Formulation and characterization of nanoemulsion from Alhagi maurorum essential oil and study of its antimicrobial, antibiofilm, and plasmid curing activity against antibiotic-resistant pathogenic bacteria. J Environ Health Sci Eng. 2020;18(2): 1015–1027. doi: https://doi.org/10.1007/s40201-020-00523-7
18. Asadinezhad S, Khodaiyan F, Salami M, Hosseini H, Ghanbarzadeh B. Effect of different parameters on orange oil nanoemulsion particle size: combination of low energy and high energy methods. Journal of Food Measurement and Characterization. 2019; 13(4): 1-10. doi: 10.1007/s11694-019-00170-z
19. Manyarara TE, Khoza S, Dube A, Maponga CC. Formulation and characterization of a paediatric nanoemulsion dosage form with modified oral drug delivery system for improved dissolution rate of nevirapine. In: MRS Advances. 2018; 3: 2203-2219. doi: 10.1557/adv.2018.320.
20. Li G, Zhou Q, Liu S, Qian C, Han J, Zhou T, et al. Effect of Tribute citrus essential oil nanoemulsion-loaded gelatin on the gel behavior and gelation surface morphologies. Food Biosci. 2023; 51: 102322. doi: https://doi.org/10.1016/j.fbio.2022.102322.
21. Xie H, Zhang Y, Cao M, Liu C, Mao Y, Ren G, et al. Fabrication of PGFE/CN-stabilized β-carotene-loaded peppermint oil nanoemulsions: Storage stability, rheological behavior and intelligent sensory analyses. LWT. 2021; 138: 110608. Doi: 10.1016/j.lwt.2020.110688
22. Mohamad Shahripoddin NS, Salim N, Ahmad N. Influence of alkyl polyglucoside on physicochemical characteristics and in vitro studies of ibuprofen-loaded nanoemulsion formulations. Colloid Polym Sci. 2021;299(10):1575-1587. doi:10.1007/s00396-021-04860-0.
23. Mizzi L, Chatzitzika C, Gatt R, Valdramidis V. HPLC analysis of phenolic compounds and flavonoids with overlapping peaks. Food Technol Biotechnol. 2020; 58(1): 15-22. doi:10.17113/ftb.58.01.20.6265.
24. Carvalho VF, Ramos LDA, Da Silva CA, Nebo L, Moraes D, Da Silva FFA, et al. In vitro anthelmintic activity of Siparuna guianensis extract and essential oil against Strongyloides venezuelensis. J Helminthol. 2020;94:e146. doi:10.1017/S0022149X19001010.
25. Ceballos L, Canton C, Pruzzo C, Sanabria R, Moreno L, Sanchis J, et al. The egg hatch test: A useful tool for albendazole resistance diagnosis in Fasciola hepatica. Vet Parasitol. 2019; 271: 1-6. doi:10.1016/j.vetpar.2019.06.010.
26. Powers KG, Wood IB, Eckert J, Gibson TE, Horton-Smith C. World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) guidelines for evaluating the efficacy of anthelmintics in ruminants (bovine and ovine). Vet Parasitol. 1982; 10(3): 265-284. doi:10.1016/0304-4017(82)90110-0.
27. Oliveira AF, Costa Junior LM, Lima AS, Silva CR, Ribeiro MNS, Mesquita JWC, et al. Anthelmintic activity of plant extracts from Brazilian savanna. Vet Parasitol. 2017; 236: 121-127. doi:10.1016/j.vetpar.2017.02.020.
28. Shepherd F, Chylinski C, Hutchings MR, Lima J, Davidson R, Kelly R, et al. Comparative analysis of the anthelmintic efficacy of European heather extracts on Teladorsagia circumcincta and Trichostrongylus colubriformis egg hatching and larval motility. Parasit Vectors. 2022; 15(1): 1-12. doi:10.1186/s13071-022-05200-0.
29. Scott SR, Grigarick AA. Laboratory studies of factors affecting egg hatch of Triops longicaudatus (LeConte) (Notostraca: Triopsidae). Hydrobiologia. 1979; 63(2): 145-152. doi:10.1007/BF00018814.
30. Ueno H, Gonçalves PC. Manual para diagnóstico das helmintoses de ruminantes. 4th ed. Tokyo: Japan International Cooperation Agency; 1998.
31. Cabardo DE, Portugaliza HP. Anthelmintic activity of Moringa oleifera seed aqueous and ethanolic extracts against Haemonchus contortus eggs and third-stage larvae. Int J Vet Sci Med. 2017; 5(1): 30-34. doi:10.1016/j.ijvsm.2017.02.001.
32. Schürmann S, Harder A, Schnieder T, von Samson-Himmelstjerna G. Effects of emodepside on egg hatching, larval development, and larval motility in parasitic nematodes. Parasitol Res. 2007; 101(Suppl 1): S59-S66. doi:10.1007/s00436-007-0681-5.
33. Kotze AC, Coleman GT, Mai A, McCarthy JS. Field evaluation of anthelmintic drug sensitivity using in vitro egg hatch and larval motility assays with Necator americanus recovered from human clinical isolates. Int J Parasitol. 2005; 35(4): 445-453. doi:10.1016/j.ijpara.2004.12.005.
34. Vidyarthi RD. A Textbook of Zoology. 14th ed. New Delhi: S. Chand and Co. Press; 1977. p. 329-331.
35. Thorn GW, Adams RD, Braunwald E, Isselbacher KJ, Petersdorf RG. Harrison’s Principles of Internal Medicine. New York: McGraw-Hill; 1977. p. 1088-1090.
36. Adate PS, Parmesawaran S, Chauhan Y. In vitro anthelmintic activity of stem extracts of Piper betle Linn against Pheretima posthuma. Pharmacognosy Journal. 2012; 4(29). [Link Not Available]
37. Patel J, Reddy V, Kumar GS, Satyasai D, Bajari B. Gas chromatography and mass spectroscopy analysis of bioactive components on the leaf extract of Terminalia coriacea: A potential folklore medicinal plant. International Journal of Green Pharmacy. 2017; 11(1). [Link Not Available]
38. Sharma A, Gupta S, Chauhan S, Nair A, Sharma P. Astilbin: A promising unexplored compound with multidimensional medicinal and health benefits. Pharmacological Research. 2020; 158. doi: 10.1016/j.phrs.2020.104853
39. Abdulhafiz F, Reduan MFH, Hisam AH, Mohammad I, Abdul Wahab IR, Abdul Hamid FF, et al. LC–TOF-MS/MS and GC-MS-based phytochemical profiling and evaluation of wound healing activity of Oroxylum indicum (L.) Kurz (Beka). Frontiers in Pharmacology. 2022; 13. doi: 10.3389/fphar.2022.1087587
40. Kumar RN, Prasanth D, Midthuri PG, Ahmad SF, Badarinath AV, Karumanchi SK, et al. Unveiling the cardioprotective power: LC–MS-analyzed Neolamarckia cadamba leaf ethanolic extract against myocardial infarction in rats and in silico support analysis. Plants. 2023; 12(21). doi: 10.3390/plants12213897
41. Mari A, Lyon D, Fragner L, Montoro P, Piacente S, Wienkoop S, et al. Phytochemical composition of Potentilla anserina L. analyzed by an integrative GC-MS and LC-MS metabolomics platform. Metabolomics. 2013; 9(3): 599–607. doi: 10.1007/s11306-012-0487-3
42. Mahmoudi M, Boughalleb F, Maaloul S, Mabrouk M, Abdellaoui R. Phytochemical screening, antioxidant potential, and LC–ESI–MS profiling of Ephedra alata and Ephedra altissima seeds naturally growing in Tunisia. Applied Biochemistry and Biotechnology. 2023; 195(10): 5903–15. doi: 10.1007/s12010-023-04596-3
43. Ramachandran S, Rajasekaran A, Adhirajan N. In vivo and in vitro antidiabetic activity of Terminalia paniculata bark: An evaluation of possible phytoconstituents and mechanisms for blood glucose control in diabetes. ISRN Pharmacology. 2013; 2013. doi: 10.1155/2013/289719
44. Shifali Thakur, Hemlata Kaurav, Gitika Chaudhary. Terminalia arjuna: A potential Ayurvedic cardio tonic. International Journal for Research in Applied Sciences and Biotechnology. 2021; 8(2). doi: 10.31033/ijrasb.8.2.2
45. Hassan Bulbul MR, Uddin Chowdhury MN, Naima TA, Sami SA, Imtiaj MS, Huda N, et al. A comprehensive review on the diverse pharmacological perspectives of Terminalia chebula Retz. Heliyon. 2022; 8(5). doi: 10.1016/j.heliyon.2022.e09512
46. Ali Khan MS, Nazan S, Mat Jais AM. Flavonoids and antioxidant activity mediated gastroprotective action of leathery murdah, Terminalia coriacea (Roxb.) Wight and Arn. leaf methanolic extract in rats. Arquivos de Gastroenterologia. 2017; 54(3): 202–207. doi: 10.1590/S0004-2803.201700000-26
47. Hami Z. A Brief Review on Advantages of Nano-based Drug Delivery Systems. Annals of Military and Health Sciences Research. 2021; 19(1): 1-5. DOI: 10.5812/amh.112919
48. Rehman A, Ullah R, Uddin I, Zia I, Rehman L, Abidi SMA. In vitro anthelmintic effect of biologically synthesized silver nanoparticles on liver amphistome, Gigantocotyle explanatum. Exp Parasitol. 2019; 198: 68-74. DOI: 10.1016/j.exppara.2019.04.007
49. Wang G, Gaikwad H, McCarthy MK, Gonzalez-Juarrero M, Li Y, Armstrong M, et al. Lipid nanoparticle formulation of niclosamide (Nano NCM) effectively inhibits SARS-CoV-2 replication in vitro. Precis Nanomed. 2021; 4(1): 1-13. DOI: 10.33218/001c.21388
50. Gajera G, Godse C, DeSouza A, Mehta D, Kothari V. Potent anthelmintic activity of a colloidal nano-silver formulation (Silversol®) against the model worm Caenorhabditis elegans. BMC Res Notes. 2023; 16(1): 1-6. DOI: 10.1186/s13104-023-06312-0
51. Adamczyk B, Simon J, Kitunen V, Adamczyk S, Smolander A. Tannins and their complex interaction with different organic nitrogen compounds and enzymes: Old paradigms versus recent advances. ChemistryOpen. 2017; 6(5): 610-622. DOI: 10.1002/open.201700113
52. Azmir J, Zaidul ISM, Rahman MM, Sharif KM, Mohamed A, Sahena F, et al. Techniques for extraction of bioactive compounds from plant materials: A review. J Food Eng. 2013; 117(4): 426-436. DOI: 10.1016/j.jfoodeng.2013.01.014
53. Patel J, Kumar GS, Roy H, Maddiboyina B, Leporatti S, Bohara RA. From nature to nanomedicine: Bioengineered metallic nanoparticles bridge the gap for medical applications. Discover Nano. 2024;19(1):1-15. DOI: 10.1186/s11671-023-06512-3
54. Pethe AM, Yadav KS. Polymers, responsiveness and cancer therapy. Artif Cells Nanomed Biotechnol. 2019; 47(1): 1-15. DOI: 10.1080/21691401.2019.1650112
55. Khobragade DS, Potbhare MS, Lote SB, Pardeshi KS, Wankhede SB, Tenpe CR. Preclinical evaluation of the effect of antioxidant N-acetyl-D-Glucosamine on haematinic potentials of lauha bhasm and mandura bhasm. Biomed Pharmacol J. 2021; 14(1): 101-110. DOI: 10.13005/bpj/2157
56. Khobragade DS, Potbhare MS, Pimpale A, Wankhede SB, Tenpe CR. Preclinical appraisal of hematinic potential of Mandura Bhasma for treating anemia. J Pharm Res Int. 2021; 33(1): 45-52. DOI: 10.9734/jpri/2021/v33i1431272
57. Coles GC, Bauer C, Borgsteede FHM, Geerts S, Klei TR, Taylor MA, et al. World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) methods for the detection of anthelmintic resistance in nematodes of veterinary importance. Vet Parasitol. 1992; 44(1-2): 35-44. DOI: 10.1016/0304-4017(92)90141-U
58. Kotze AC, Le Jambre LF, O’Grady J. A modified larval migration assay for detection of resistance to macrocyclic lactones in Haemonchus contortus, and drug screening with Trichostrongylidae parasites. Vet Parasitol. 2006; 137(3-4): 294-305. DOI: 10.1016/j.vetpar.2006.01.011
59. Hounzangbe-Adote MS, Paolini V, Fouraste I, Moutairou K, Hoste H. In vitro effects of four tropical plants on three life-cycle stages of the parasitic nematode, Haemonchus contortus. Res Vet Sci. 2005; 78(2): 155-160. DOI: 10.1016/j.rvsc.2004.07.010
60. Costa CTC, Morais SM de, Bevilaqua CML, Souza MMC de, Leite FKA. Ovicidal effect of Mangifera indica L. seeds extracts on Haemonchus contortus. Rev Bras Parasitol Vet. 2002; 11(2): 71-75. DOI: 10.1590/S1984-29612002000200004
61. Chagas AC de S, Vieira L da S. Azadirachta indica (Neem) action in goats gastrointestinal nematodes. Braz J Vet Res Anim Sci. 2007; 44(1): 77-84. DOI: 10.1590/S1519-99402007000100011
62. Peneluc T, DLF, AGN, AMC, MEL, CAC, BTCB, AMA, BMJ. Anthelmintic activity of aqueous extract of Zanthoxylum rhoifolium Lam. leaves (Rutaceae). Rev Bras Parasitol Vet. 2009; 18: 43-48. DOI: 10.1590/S1678-49382009000100006
63. Mukherjee PK. Chapter 11 - LC–MS: A Rapid Technique for Understanding the Plant Metabolite Analysis. In: Mukherjee PK, editor. Quality Control and Evaluation of Herbal Drugs. Elsevier; 2019. p. 459-479. Available from: https://www.sciencedirect.com/science/article/pii/B9780128133743000119
64. Lynch KL. Chapter 6 - Toxicology: Liquid Chromatography Mass Spectrometry. In: Nair H, Clarke W, editors. Mass Spectrometry for the Clinical Laboratory. San Diego: Academic Press; 2017. p. 109-130. Available from: https://www.sciencedirect.com/science/article/pii/B9780128008713000067
65. Reske T, Wulf K, Eickner T, Grabow N, Schmitz KP, Siewert S. Non-destructive analysis of drug content in polymer coatings with Raman spectroscopy. In: Current Directions in Biomedical Engineering. 2019. p. 1-7. DOI: 10.1515/cdbme-2019-0164
66. Coulier L, Wopereis S, Rubingh C, Hendriks H, Radonjić M, Jellema RH. 4.09 - Systems Biology. In: Brown SD, Tauler R, Walczak B, editors. Comprehensive Chemometrics. Oxford: Elsevier; 2009. p. 279-312. Available from: https://www.sciencedirect.com/science/article/pii/B9780444527011000144
67. Gamenara D, Pandolfi E, Saldaña J, Domínguez L, Martínez MM, Seoane G. Nematocidal activity of natural polyphenols from Bryophytes and their derivatives. Arzneimittelforschung/Drug Research. 2001; 51(6): 415-419. DOI: 10.1055/s-0031-1300104
68. Athanasiadou S, Kyriazakis I, Jackson F, Coop RL. Direct anthelmintic effects of condensed tannins towards different gastrointestinal nematodes of sheep: In vitro and in vivo studies. Vet Parasitol. 2001; 99(3): 205-219. DOI: 10.1016/S0304-4017(01)00429-6
69. Thompson DP, Geary TG. The Structure and Function of Helminth Surfaces. In: Biochemistry and Molecular Biology of Parasites. 1995. p. 1-13.
70. Burke JM, Miller JE. Sustainable Approaches to Parasite Control in Ruminant Livestock. Vet Clin North Am Food Anim Pract. 2020; 36(2): 365-376. DOI: 10.1016/j.cvfa.2020.02.007
71. Athanasiadou S, Githiori J, Kyriazakis I. Medicinal plants for helminth parasite control: Facts and fiction. Anim. 2007; 1(1): 1-7. DOI: 10.1017/S1751731107000030
72. Min BR, Fernandez JM, Barry TN, McNabb WC, Kemp PD. The effect of condensed tannins in Lotus corniculatus upon reproductive efficiency and wool production in ewes during autumn. Anim Feed Sci Technol. 2001; 92(3-4): 1-13. DOI: 10.1016/S0377-8401(01)00256-4
73. Asha MK, Prashanth D, Murali B, Padmaja R, Amit A. Anthelmintic activity of essential oil of Ocimum sanctum and eugenol. Fitoterapia. 2001; 72(6): 669-675. DOI: 10.1016/S0367-326X(01)00245-9
74. Ferreira LE, Benincasa BI, Fachin AL, França SC, Contini SSHT, Chagas ACS, et al. Thymus vulgaris L. essential oil and its main component thymol: Anthelmintic effects against Haemonchus contortus from sheep. Vet Parasitol. 2016; 228: 89-93. DOI: 10.1016/j.vetpar.2016.09.007
75. Sebai E, Abidi A, Serairi R, Ghawari B, Dhibi M, Benyedem H, et al. Assessment of anthelmintic potentials of Myrtus communis against Haemonchus contortus and Heligmosomoides polygyrus. Exp Parasitol. 2022; 240: 108323. DOI: 10.1016/j.exppara.2022.108323