Author(s): Khamida Abdikadirova, Kymbat Amreyeva, Xeniya Mkhitaryan, Nazgul Omarbekova, Bayan Yessilbayeva, Bayan Dyussenbekova, Kymbat Zhienbayeva, Bahyt Suleimenova

Email(s): kymbatamreeva@mail.ru

DOI: 10.52711/0974-360X.2025.00115   

Address: Khamida Abdikadirova, Kymbat Amreyeva*, Xeniya Mkhitaryan, Nazgul Omarbekova, Bayan Yessilbayeva, Bayan Dyussenbekova, Kymbat Zhienbayeva, Bahyt Suleimenova Non-Profit Joint-Stock Company «Karaganda Medical University», Gogolya 40, Karaganda 1000008, Kazakhstan.
*Corresponding Author

Published In:   Volume - 18,      Issue - 2,     Year - 2025


ABSTRACT:
Industrial dust formed during the extraction and processing of polymetallic ores is a combination of various inorganic compounds. Of these, some inorganic compounds have a predominantly fibrogenic effect, while others have a local, resorptive and toxic-chemical effect. Therefore, the study of the features of morphological changes in the liver under toxic and fibrogenic effects of copper-containing polymetallic dust remains relevant. The morphofunctional state of liver tissue was studied in rats exposed to copper-containing polymetallic dust on the background of alimentary correction for 30 days. The experimental study was conducted on mongrel white male rats, which were divided into 3 groups and kept on a regular vivarium diet. Polymetallic dust of the Balkhash Mining and Metallurgical Combine with a 10% copper (Cu-10%) content ranging in size from 2 to 5 microns was injected once intratracheally in the form of a suspension of 50 mg of dust in 1.0 ml of saline solution according to a generally accepted method. Control animals were injected with 1 ml of saline solution. The rats received an alimentary correction at a dose of 150 g with food. The animals were slaughtered by instant decapitation. Morphometric analysis of the volume ratios of the structural components of the liver revealed an increase in the following indicators in the animals of group II compared to group I: Vv of necrosis – by 1 170 times (p<0.001), Vv of infiltrates – by 345 times (p<0.001), Vv of portal tracts – by 37.71% (p<0.05), Vv of dystrophically altered hepatocytes – by 24.13 times (p<0.001), Vv of fibrosis – 5.09 times (p<0.01). It should be noted that the Vv of two-core cells did not significantly differ from the level in group I. Based on the obtained data, the effect of polymetallic dust with a content of Cu-10% has a more expressed toxic effect on the structure and function of liver hepatocytes of experimental animals. The directed effect of alimentary correction on the system of microsomal oxidation of toxins in the liver and the mechanism of this product is based on stimulation of the formation of water-soluble compounds that are excreted with sorbents from the body.


Cite this article:
Khamida Abdikadirova, Kymbat Amreyeva, Xeniya Mkhitaryan, Nazgul Omarbekova, Bayan Yessilbayeva, Bayan Dyussenbekova, Kymbat Zhienbayeva, Bahyt Suleimenova. The hepatotoxic effects of copper-containing polymetallic dust and their correction with sorbents. Research Journal of Pharmacy and Technology.2025;18(2):777-4. doi: 10.52711/0974-360X.2025.00115

Cite(Electronic):
Khamida Abdikadirova, Kymbat Amreyeva, Xeniya Mkhitaryan, Nazgul Omarbekova, Bayan Yessilbayeva, Bayan Dyussenbekova, Kymbat Zhienbayeva, Bahyt Suleimenova. The hepatotoxic effects of copper-containing polymetallic dust and their correction with sorbents. Research Journal of Pharmacy and Technology.2025;18(2):777-4. doi: 10.52711/0974-360X.2025.00115   Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-2-47


REFERENCES:
1.    Sadykov M. N., et al. Assessment of working conditions of mining industry workers. Occupational Medicine and Industrial Ecology. 2017; 3: 71-73. https://www.qmu.edu.kz/media/qmudoc/journaln3_2017.pdf
2.    Lozovaya Ye. V., et al. Hygienic assessment of working conditions of workers of mining and processing plants. Occupational Medicine and Industrial Ecology. 2015; 3: 121-127. https://cyberleninka.ru/article/n/gigienicheskaya-otsenka-usloviy-truda-rabotnits-gorno-obogatitelnyh-fabrik
3.    Guselnikov S. R., Gogoleva O. I., Lipatov G. Ya., Adrianovsky V. I., Samylkin A. A. Occupational morbidity of workers engaged in the production of refined copper. Occupational Medicine and Industrial Ecology. 2015; 9: 46-47. https://www.journal-irioh.ru/jour/issue/view/9
4.    S. Shorin, K. Nurlibaeva, G. Kartbayeva, M. Mukasheva, K. Tebenova, А. Konkabayeva, S. Tyrzhanova. The study of Influence of Polymetallic dust of Temirtau Town on Physiological Characteristics of Laboratory Animals. Research J. Pharm. and Tech. 2017; 10(8): 2564-2566. doi: 10.5958/0974-360X.2017.00454.1   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2017-10-8-24
5.    Ankita Chatterjee, Jayanthi Abraham. Biosorption of Copper using Oryza sativa and Aspergillus oryzae. Research J. Pharm. and Tech. 2016; 9(6): 664-670. doi: 10.5958/0974-360X.2016.00125.6
6.    Serebryakov P. V., Kartashyov O. I., Fedina I. N. Clinical and hygienic assessment of the health status of copper production workers in the conditions of the Far North. Occupational Medicine and Industrial Ecology. 2016; 1: 25-28.
7.    Sheyenkova M. V., Rushkevich O. P., Yatsyna I. V. Features of metabolic pathology of the liver under the influence of industrial aerosols. Hygiene and sanitation. 2021; 100 (9): 943-946. https://doi.org/10.47470/0016-9900-2021-100-9-943-946
8.    Jamil M, Khatoon A, Saleemi MK, Gul AHST, Imran M, Majeed W, Tahir MW and Aleem MT, 2023. An overview of copper toxicity and public health concerns with mitigation strategies. In: Abbas RZ, Saeed NM, Younus M, AguilarMarcelino L and Khan A (eds), One Health Triad, Unique Scientific Publishers, Faisalabad, Pakistan, Vol. 2, pp: 162-167. https://doi.org/10.47278/book.oht/2023.56
9.    Haywood S. Copper toxicosis and tolerance in the rat. I--Changes in copper content of the liver and kidney. J. Pathol.1985.; 145(2):149-158.
10.    Rats Sri Wahyuni Nasution, Eti Yerizel, Zulkarnain Chaidir, Rahmiana Zein.  Protective Effects of Nothopanax scutellarium on Hepatotoxicity of Copper (II) Induced to Experimental. Open Access Macedonian Journal of Medical Sciences. 2020; Apr 28; 8(A): 283-286.
11.    Nederbragt H., van den Ingh T.S., Wensvoort P. Pathobiology of copper toxicity.1984.;6(4):179 – 85.
12.    Kupsha E. I. Morphofunctional characteristic of the nuclei of hepatocytes of mice with lead intoxication. Mezhdunarodnyy nauchno-issledovatel'skiy zhurnal 2017; 11-3: 27-2
13.    Shaimardanova G. M. Peroxidation in the lungs, liver and kidneys of rats with chronic exposure to polymetallic dust. Successes of modern natural science. 2008; 8: 19-22.
14.    Abdikadirova H.R., Amreeva K.E., Kalishev M.G., Zhautikova S.B. Evaluation of the ef ectiveness of alimentary correction of pathological changes in hepatic tissue under the inf uence of industrial copper-containing dust in the experiment. Russian Journal of Occupational Health and Industrial Ecology. 2019; 1(7): 438-443. https://doi.org/10.31089/1026-9428-2019-59-7-438-443
15.    Abdikadirova KR, Amreyeva KY, Zhautikova SB, Kostyleva OA, Abikenova FS, Chergizova BT, Talaspekova YP, Atshabarova SS. Morphological Changes in the Hepatic Tissue at the Impact of Industrial Copper-bearing Dust in the Experiment. Open Access Maced J Med Sci [Internet]. 2020 Oct. 22 [cited 2023 Dec. 25];8(E):653-6. Available from: https://oamjms.eu/index.php/mjms/article/view/3473
16.    Tatayeva R. K., Musina A. A., Burumbayeva M. B. Morphological characteristics of liver tissue under inhalation exposure to polymetallic condensation aerosol. Izvestiya NAS RK. Series biology. 2014; 4: 43-46.
17.    Ibrayeva L. K., Battakova Zh. Ye., Amanbekova A. U., Khanturina G. R. The nature of changes in the activity of energy enzymes in the blood of rats under the action of fine aerosols of polymetallic dust and alimentary correction. Fundamental research. 2011; 9 (2): 251-253.
18.    Cytoplasmic copper and its toxic effects. Studies in Indian childhood cirrhosis. H. Popper, S. Goldfischer, I. Sternlieb et al. Lancet. 1979.;1(8128):1205 — 1208.
19.    Mullins J. E., Fuentealba I. C. Immunohistochemical detection of metallothionein in liver, duodenum and kidney after dietary copper-overload in rats. Histol. Histopathol.1998.; 13(3): 627 — 633.
20.    Luza S. C., Speisky H. C. Liver copper storage and transport during development: implications for cytotoxicity. Am. J. Clin. Nutr.1996.; 63(5): 812 -820.
21.    Shafigullina Z. A. Regenerative response of hepatocytes in diffuse toxic damage. Bulletin of the Ural medical academic science. 2020.; 17(4): 313–322. doi: 10.22138/2500-0918-2020-17-4-313-322
22.    Harmful chemicals. Inorganic compounds of elements of groups I-IV: Handbook / Edited by V. A. Filov. 1988.; 512.
23.    Harmful chemicals. Inorganic compounds of elements of groups V-VIII: Handbook / Edited by V. A. Filov. 989.; 592.
24.    Pierce E. Histochemistry. 1962.; 962.
25.    Plokhinskiy N. A. Algorithms of biometrics. 1980.; 150.
26.    Avtandilov G. G. Morphometry in pathology. 1973.; 248 p.
27.    Avtandilov G. G. Introduction to quantitative pathological morphology. 1980.; 216.
28.    Avtandilov G. G. Medical morphometry. 1990.; 382.
29.    Tashke K. Introduction to quantitative cytohistological morphology.1980.; 191.
30.    Gutnikova A. R., et al. The possibility of restoring the ultrastructure of the liver during intoxication with heavy metal salts. Occupational medicine and industrial ecology. 2012.;6: 32-35.
31.    Safeena Beevi S S, Biju Pottakkat, Sankar Narayanan. Role of Probiotics and Gut microbiota in Liver Diseases. Asian Journal of Nursing Education and Research. 2023; 13(2): 157-1. DOI: 10.52711/2349-2996.2023.00034
32.    Kudasheva A. R., Teregulov B. F. Development of preventive nutrition for miners against the background of xenobial stress. Occupational medicine and human ecology. 2022.; 3: 164-168. doi:10.24412/2411-3794-2022-10319.
33.    Davoodi SH, et al. Health-Related Aspects of Milk Proteins. Iran J Pharm Res. 2016; Summer; 15(3): 573-591. PMID: 27980594; PMCID: PMC5149046.
34.    Raeeszadeh M, Beheshtipour J, Jamali R, Akbari A. The Antioxidant Properties of Alfalfa (Medicago sativa L.) and Its Biochemical, Antioxidant, Anti-Inflammatory, and Pathological Effects on Nicotine-Induced Oxidative Stress in the Rat Liver. Oxid Med Cell Longev. 2022; Mar 26; 2022: 2691577. doi: 10.1155/2022/2691577. PMID: 35378828; PMCID: PMC8976666.
35.    Ghawate V. B., Purnima Shrivastava, Bhambar R.S. Hepatoprotective activity of Bridelia retusa bark extracts against carbon tetrachloride -induced liver damage rats. Res. J. Pharmacognosy and Phytochem. 2017; 9(2): 121-124.
36.    CS Kandasamy, Mohammed Basil E, Shimna Thasnim PS, R Siva Kumar, V Gopal, R Venkatnarayanan. Hepatoprotective Activity of Polyherbal Formulation Containing Some Indigenous Medicinal Plants in Rats. Research J. Pharm. and Tech. 2010; 3 (3): July-Sept. 828-831.   Available on: https://rjptonline.org/AbstractView.aspx?PID=2010-3-3-38
37.    Venkatesh P, Hepcy Kalarani D, Dinakar A. Hepatoprotective Activity of an Aqueous Extract of Stem and Leaves of Boerhaavia diffusa Against Carbon Tetra Chloride Induced Hepatotoxicity in Rats. Research J. Pharm. and Tech.3 (3): July-Sept. 2010; Page 840-842.   Available on: https://rjptonline.org/AbstractView.aspx?PID=2010-3-3-41
38.    Merlin, New Jersey, V. Partasarati, R. Manavalan. The role of flavonoids in free radical liver fibrosis. Research by J. Pharm. and Tech. 2009; 2(1): January-March 52-57. Available at: https://rjptonline.org/AbstractView.aspx?PID=2009-2-1-85.
39.    Adesh Upadhyay, Arun Mishra, Sachin Chaudhuri, Pronobesh Chattopadhyay. Mitochondrial antioxidant enzymes caused by cigarette smoke in experimental Wistar rats. Research by J. Pharm. and Tech. 2009;  2 (4): October-December. 690-693. Available at: https://rjptonline.org/AbstractView.aspx?PID=2009-2-3-88.
40.    Gauri Karwani, Siddhraj S. Sisodia. Hepatoprotective activity of Chenopodium album Linn. in Ethanol induced Hepatotoxicity in Rats. Research J. Pharm. and Tech. 2015; 8(6): June, 669-673. doi: 10.5958/0974-360X.2015.00105.5   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2015-8-6-1
41.    Aksyonov I. V., et al. The effect of rutin on the activity of antioxidant defense enzymes and xenobiotic metabolism in the liver of rats with different fat content in the diet. Nutrition issues. 2014; 83(5): 4-11. doi:10.24411/0042-8833-2014-00043
42.    Baimatov V. N. et al. The effect of a high-fat diet on the morphofunctional state of the rat liver. Biomedicine. 2018.; 4: 44-50.
43.    Nasyrov Kh. M., Chepurina L. S., Kireyeva L. M. Study of hepatoprotective and choleretic effects of glycyrrhizic acid derivatives. Experimental and Clinical Pharmacology. 1995.; 58; 6: 60-63.
44.    Rajesh M.G., Latha M.S. Hepatoprotective Activity of Glycyrrhiza glabra Linn. on Experimental Liver Damage in Albino Rats. Research J. Pharmacognosy and Phytochemistry 2010; 2(4): 313-316.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available