Author(s): Oryce Zahara, Endah Mardiati, Ani Melani Maskoen, Ganesha Wandawa

Email(s): orycez@yahoo.com

DOI: 10.52711/0974-360X.2025.00100   

Address: Oryce Zahara1,2*, Endah Mardiati3, Ani Melani Maskoen4, Ganesha Wandawa5
1Department of Orthodontics, Faculty of Dentistry, Universitas Andalas, Padang, Sumatera Barat, Indonesia.
2Doctoral Candidate, Faculty of Dentistry, Universitas Padjadjaran, Jawa Barat, Indonesia.
3Department of Orthodontics, Faculty of Dentistry, Universitas Padjadjaran, Jawa Barat, Indonesia.
4Department of Oral Biology, Faculty of Dentistry, Universitas Padjadjaran, Jawa Barat, Indonesia.
5Department of Orthodontics, Faculty of Dentistry, Universitas Pembangunan Nasional Veteran, Jakarta Selatan, Indonesia.
*Corresponding Author

Published In:   Volume - 18,      Issue - 2,     Year - 2025


ABSTRACT:
Orthodontic retraction involves moving teeth and significantly impacts the alveolar bone that supports the teeth. VEGF, ALP, MMP-8 proteins, osteoblasts, and osteoclasts indicate bone remodeling during this process. The a-mangostin combined with hyperbaric oxygen therapy enhanced bone repair after orthodontic retraction. The study aimed to evaluate the synergistic effect of a-mangostin and hyperbaric oxygen therapy on protein regeneration in alveolar bone after orthodontic retraction, examining VEGF, FGF-2, ALP, MMP-8, and osteoblast cell and osteoclast expression in Rattus novergicus mouse models. A total of 25 animal models performed short retraction of the elastomeric chain (orthodontics). Animals were treated for 28 days, then protein expression was examined with immunohistochemistry, and an assessment of osteoblast cells and osteoclasts was performed using staining H and E. Image reading was done with microscopy at 400x. The a-mangosteen group and hyperbaric oxygen therapy (T3) showed the highest increase in VEGF expression (33.52±1.42), the hyperbaric oxygen therapy group (T2) showed increased expression of FGF-2 (31.44±1.01) and ALP (32.35±0.70). While the a-mangostin group (26.33±14.77)/T1 and combined a-mangostin with hyperbaric oxygen therapy (25.73±14.41)/T3 had a better ability to maintain the balance of MMP-8 expression, osteoblast cells, and osteoclasts. a-mangostin therapy or combination with hyperbaric oxygen therapy showed a positive effect on the expression of several essential proteins in the regeneration of alveolar bone after orthodontic retraction, which is characterized by the presence of a balance in cell numbers osteoblast cells and osteoclasts.


Cite this article:
Oryce Zahara, Endah Mardiati, Ani Melani Maskoen, Ganesha Wandawa. The α-Mangostin and Hyperbaric Oxygen Therapy: Catalysts of Bone Growth Factors Regeneration in Alveolar Bone After Orthodontic Retraction. Research Journal of Pharmacy and Technology.2025;18(2):677-3. doi: 10.52711/0974-360X.2025.00100

Cite(Electronic):
Oryce Zahara, Endah Mardiati, Ani Melani Maskoen, Ganesha Wandawa. The α-Mangostin and Hyperbaric Oxygen Therapy: Catalysts of Bone Growth Factors Regeneration in Alveolar Bone After Orthodontic Retraction. Research Journal of Pharmacy and Technology.2025;18(2):677-3. doi: 10.52711/0974-360X.2025.00100   Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-2-32


REFERENCES:
1.    Antoun JS, Mei L, Gibbs K, Farella M. Effect of orthodontic treatment on the periodontal tissues. Periodontology 2000 2017; 74(1): 140-57. https://doi.org/10.1111/prd.12194
2.    Ganta GK, Alla RK, Cheruvu K, Guduri BR. Bone grafts: An overview of bone remodeling, types and recent advances. Research Journal of Pharmacy and Technology. 2021; 14(11): 6101-05. https://doi.org/10.52711/0974-360X.2021.01060
3.    Omi M, Mishina Y. Roles of osteoclasts in alveolar bone remodeling. Genesis. 2022; 60(8-9): e23490. https://doi.org/10.1002/dvg.23490
4.    Huang X, Xie M, Xie Y, et al. The roles of osteocytes in alveolar bone destruction in periodontitis. Journal of Translational Medicine 2020; 18: 1-15. https://doi.org/10.1186/s12967-020-02664-7
5.    Altun S. Characterization of microRNA-101,-124,-143,-145,-223 in GCF During Orthodontic Treatment [University of Illinois at Chicago; 2020.
6.    Ferguson DJ, Wilcko MT. Tooth movement mechanobiology: toward a unifying concept. Biology of Orthodontic Tooth Movement: Current Concepts and Applications in Orthodontic Practice 2016: 13-44. http://dx.doi.org/10.1007/978-3-319-26609-1_2
7.    Pham DT, Tiyaboonchai W. Fibroin nanoparticles: A promising drug delivery system. Drug delivery 2020; 27(1): 431-48. https://doi.org/10.1080%2F10717544.2020.1736208
8.    Kresnoadi U, Ariani MD, Djulaeha E, Hendrijantini N. The potential of mangosteen (Garcinia mangostana) peel extract, combined with demineralized freeze-dried bovine bone xenograft, to reduce ridge resorption and alveolar bone regeneration in preserving the tooth extraction socket. J Indian Prosthodont Soc 2017; 17(3): 282-88. https://doi.org/10.4103/jips.jips_64_17
9.    Kenkre J, Bassett J. The bone remodelling cycle. Annals of clinical biochemistry. 2018; 55(3): 308-27. https://doi.org/10.1177/0004563218759371
10.    Edrizal E, Trimurni A, Putra DP. Phyto Effect of Punica granatum on the Remodelling of Maxilla Bone, Study of Osteoblast and Osteoclast. Journal of Biomimetics, Biomaterials and Biomedical Engineering. 2020; 48: 54-61 https://doi.org/10.4028/www.scientific.net/JBBBE.48.54.
11.    Gao Y, Zhang M, Tian X, Wang M, Zhang F. Experimental animal study on BMP-3 expression in periodontal tissues in the process of orthodontic tooth movement. Experimental and Therapeutic Medicine. 2019; 17(1): 193-98. https://doi.org/10.3892%2Fetm.2018.6950
12.    Marpaung YA, Abidin T, Ilyas S, Nainggolan I, Gani BA. Role of Nacre and Biodentine to Inducing the TGF-β1 in the Dentin Tertiary Formation on the Pulpitis Reversible of Rattus norvegicus. Research Journal of Pharmacy and Technology 2022; 15(8): 3479-84. https://doi.org/10.52711/0974-360X.2022.00583.
13.    Narmada IB, Rubianto M, Putra ST. The Role of Low-Intensity Biostimulation Laser Therapy in Transforming Growth Factor β1, Bone Alkaline Phosphatase and Osteocalcin Expression during Orthodontic Tooth Movement in Cavia porcellus. Eur J Dent 2019; 13(1): 102-07. https://doi.org/10.1055/s-0039-1688655
14.    Florencio-Silva R, Sasso GRdS, Sasso-Cerri E, Simões MJ, Cerri PS. Biology of bone tissue: structure, function, and factors that influence bone cells. BioMed research international. 2015; 2015. https://doi.org/10.1155%2F2015%2F421746
15.    Arba M, Jasriati J. Structure-based pharmacophore modelling for identifying VEGFR2 inhibitor. Research Journal of Pharmacy and Technology. 2020; 13(7): 3129-34. https://doi.org/10.5958/0974-360X.2020.00553.3
16.    Novais A, Chatzopoulou E, Chaussain C, Gorin C. The potential of FGF-2 in craniofacial bone tissue engineering: A review. Cells 2021; 10(4): 932. https://doi.org/10.3390/cells10040932
17.    Gupta S, Shaikh A, Mohanty B, et al. Evaluation of Antiosteoporotic potential of Sesbania grandiflora Linn. aqueous fraction in Ovariectomised Rats. Research Journal of Pharmacy and Technology. 2020; 13(4): 1806-14. https://doi.org/10.5958/0974-360X.2020.00325.X
18.    Liu X-W, Ma B, Zi Y, Xiang L-B, Han T-Y. Effects of rutin on osteoblast MC3T3-E1 differentiation, ALP activity and Runx2 protein expression. European journal of histochemistry: EJH 2021; 65(1). https://doi.org/10.4081%2Fejh.2021.3195
19.    Luchian I, Goriuc A, Sandu D, Covasa M. The role of matrix metalloproteinases (MMP-8, MMP-9, MMP-13) in periodontal and peri-implant pathological processes. International Journal of Molecular Sciences. 2022; 23(3): 1806. https://doi.org/10.3390%2Fijms23031806
20.    Hu K, Olsen BR. The roles of vascular endothelial growth factor in bone repair and regeneration. Bone. 2016; 91: 30-38. https://doi.org/10.1016%2Fj.bone.2016.06.013
21.    Filipowska J, Tomaszewski KA, Niedźwiedzki Ł, Walocha JA, Niedźwiedzki T. The role of vasculature in bone development, regeneration and proper systemic functioning. Angiogenesis 2017; 20: 291-302. https://doi.org/10.1007%2Fs10456-017-9541-1
22.    Riha SM, Maarof M, Fauzi MB. Synergistic effect of biomaterial and stem cell for skin tissue engineering in cutaneous wound healing: A concise review. Polymers. 2021; 13(10): 1546. https://doi.org/10.3390/polym13101546
23.    Lindenmann J, Kamolz L, Graier W, Smolle J, Smolle-Juettner F-M. Hyperbaric oxygen therapy and tissue regeneration: a literature survey. Biomedicines. 2022; 10(12): 3145. https://doi.org/10.3390/biomedicines10123145
24.    Wu G-J, Chen K-Y, Yang J-D, Liu S-H, Chen R-M. Naringin improves osteoblast mineralization and bone healing and strength through regulating estrogen receptor alpha-dependent alkaline phosphatase gene expression. Journal of Agricultural and Food Chemistry. 2021; 69(44): 13020-33. https://doi.org/10.1021/acs.jafc.1c04353
25.    Shireen C. Changes in alkaline phosphatase levels in gingival crevicular fluid and saliva following en-masse retraction: A Comparitive study [Sri Ramakrishna Dental College and Hospital, Coimbatore; 2015.
26.    Srivastava A, Mishra A, Rai A. NSAIDs-Alendronate based prodrug for bone specific drug targeting. Research Journal of Pharmacy and Technology. 2020; 13(7): 3520-23. https://doi.org/10.5958/0974-360X.2020.00623.X
27.    Kim J-M, Lin C, Stavre Z, Greenblatt MB, Shim J-H. Osteoblast-osteoclast communication and bone homeostasis. Cells 2020; 9(9): 2073. https://doi.org/10.3390/cells9092073
28.    Kurnia S, Prahasanti C, Hendro OV, et al. OPG and RANKL Signal Transduction in Osteoblast Regulation Post Application Extract Collagen in Osteogenesis. Research Journal of Pharmacy and Technology. 2022; 15(6): 2645-49. https://doi.org/10.52711/0974-360X.2022.00442
29.    Da W, Tao L, Zhu Y. The role of osteoclast energy metabolism in the occurrence and development of osteoporosis. Frontiers in endocrinology 2021; 12: 675385 https://doi.org/10.3389%2Ffendo.2021.675385.
30.    Busri AMH, Rizqiawan A, Mira NP, et al. α-Mangostin Exposure on Viability and Migration of Osteoblast Cell Post Inflammatory Induction. Journal of International Dental and Medical Research 2023; 16(2): 462-66.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available