Author(s):
Suzana, Kholis Amalia Nofianti, Melanny Ika Sulistyowaty, Juni Ekowati, Ade Novianto, Tutuk Budiati
Email(s):
suzana@ff.unair.ac.id
DOI:
10.52711/0974-360X.2025.00845
Address:
Suzana1*, Kholis Amalia Nofianti1, Melanny Ika Sulistyowaty1, Juni Ekowati1, Ade Novianto2, Tutuk Budiati3
1Department of Pharmaceutical Science, Faculty of Pharmacy, Airlangga University, Surabaya 60115, Indonesia.
2Faculty of Pharmacy, Airlangga University, Surabaya 60115, Indonesia.
3Faculty of Pharmacy, Widya Mandala Chatholic University, Surabaya 60112, Indonesia.
*Corresponding Author
Published In:
Volume - 18,
Issue - 12,
Year - 2025
ABSTRACT:
The compound 2-ethylhexylcinnamate and its derivatives are known to have a protective effect on the skin against damage caused by UV radiation. A study was conducted to investigate the impact of hydroxyl groups in the para position on the synthesis of 2-ethylhexyl 4-hydroxycinnamate. In this study, compounds 2-ethylhexylcinnamate and 2-ethylhexyl 4-hydroxycinnamate were synthesized from cinnamic acid through nucleophilic acyl substitution reactions via the formation of acyl chloride compounds. The effect of hydroxyl groups in the para position was determined by comparing the percentage yield of 2-ethylhexyl 4-hydroxycinnamate to 2-ethylhexylcinnamate. The p-hydroxyl group is an electron-donating group that can influence the reactivity of the carbonyl group (C=O) through mesomery effects in the acylation reaction. The synthesis of 2-ethylhexyl 4-hydroxycinnamate (12.5%) resulted in a lower percentage yield compared to 2-ethylhexylcinnamate (55.8%). The result of the reaction was assessed for its purity using thin-layer chromatography. The identification of the synthesized product was performed through UV-Vis spectroscopy, infrared analysis, NMR and GC-MS. Hydroxyl groups in the para (p) position can reduce the reactivity of the carbon atom in the carbonyl group (C=O) in the acylation reaction of 2-ethylhexyl 4-hydroxycinnamate.
Cite this article:
Suzana, Kholis Amalia Nofianti, Melanny Ika Sulistyowaty, Juni Ekowati, Ade Novianto, Tutuk Budiati. The Influence of p-hydroxyl group on the Synthesis of 2-Ethylhexyl 4-Hydroxycinnamate. Research Journal Pharmacy and Technology. 2025;18(12):5855-0. doi: 10.52711/0974-360X.2025.00845
Cite(Electronic):
Suzana, Kholis Amalia Nofianti, Melanny Ika Sulistyowaty, Juni Ekowati, Ade Novianto, Tutuk Budiati. The Influence of p-hydroxyl group on the Synthesis of 2-Ethylhexyl 4-Hydroxycinnamate. Research Journal Pharmacy and Technology. 2025;18(12):5855-0. doi: 10.52711/0974-360X.2025.00845 Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-12-35
REFERENCES:
1. Verma A. Zanoletti A. Kareem KY. Adelodun B. Kumar P. Ajibade PO. Luis FO. Silva LFO. Phillips AJ. Kartheeswaran T. Bontem E. Dwivedi A. Skin protection from solar ultraviolet radiation using natural compounds: a review. Environmental Chemistry Letters. 2023; 1(3): 1-23. https://doi.org/10.1007/s10311-023-01649-4
2. Studziński W. Gackowska A. Comparation of methods for ethylhexyl 4-methoxycinnamate acid ester oxidation in water medium. Journal of Ecological Engineering, July 2017; 18(4): 204–210. https://doi.org/10.12911/22998993/74273
3. Peyrot C. Mention MM. Brunissen F. Allais F. Sinapic Acid Esters: Octinoxate Substitutes Combining Suitable UV Protection and Antioxidant Activity. Antioxidants. 2020; 9, 782. 1-16. doi: 10.3390/antiox9090782
4. Muramatsu S. Nakayama S. Kinoshita S. Onitsuka Y. Kohguchi H. Inokuchi Y. Chaoyuan Z. Takayuki Ebata T. Electronic State and Photophysics of 2-Ethylhexyl-4-methoxycinnamate as UV-B Sunscreen under Jet-Cooled Condition. J. Phys. Chem. A. 2020; 124(7): 1272–1278. https://doi.org/10.1021/acs.jpca.9b11893
5. Stiefel C. Schwack W. Photoprotection in changing times = UV filter efficacy and safety, sensitization processes and regulatory aspects. International Journal of Cosmetic Science. 2015; 37 (1): 1-29. https://doi.org/10.1111/ics.12165open_in_new
6. McMurry J. Organic Chemistry 7th EditionThomson Learning Inc. USA. 2008. 877-884.
7. Solomons, GTW. Fryhile CB. Organic Chemistry. 10th ed. United States John Willey and Sons Inc. 2011.
8. Guzman JD. Natural Cinnamic Acids, Synthetic Derivatives and Hybrids with Antimicrobial Activity. Molecules. 2014; 19(12):19292-19349. https://doi.org/10.3390/molecules191219292
9. Lana JS. Zeng RF. Jiang XY. Houa J. Liua Y. Hub ZH. Lib HX. Lid Y. Xiec SS. Dinga Y. Zhanga T. Design, synthesis and evaluation of novel ferulic acid derivatives as multitarget-directed ligands for the treatment of Alzheimer’s disease. Bioorganic Chemistry. 2020; 94, 103413: 1-12. https://doi.org/10.1016/j.bioorg.2019.103413
10. Luo Y. Zhou Y. Song Y. Chen G. Wang YX. Tian Y. Fan WW. Yang YS. Cheng T. Zhu HL. Optimization of substituted cinnamic acyl sulfonamide derivatives as tubulin polymerization inhibitors with anticancer activity. Bioorg Med Chem Lett. 2018: Dec 15; 28(23-24): 3634-3638. https://doi.org/10.1016/j.bmcl.2018.10.037
11. LingY. Gao W. Ling C. Liu J. Meng C. Qian J. Liu S. Gan H. Wu H. Tao J. Dai H. Zhang Y. β-Carboline and N-hydroxycinnamamide hybrids as anticancer agents for drug-resistant hepatocellular carcinoma. European Journal of Medicinal Chemistry. 15 April 2019; 168: 515-526. https://doi.org/10.1016/j.ejmech.2019.02.054
12. Endo S. Hoshi M. Matsunaga T. Inoue T. Ichihara K. Ikari A. Autophagy Inhibition Enhances Anticancer E_cacy of Artepillin C, a Cinnamic Acid Derivative in Brazilian Green Propolis. Biochem. Biophys. Res. Commun. 2018; 497: 437–443. https://doi.org/10.1016/j.bbrc.2018.02.105
13. Perkovi´c I. Rai´c-Mali´c S. Fontinha D. Prudêncio M. Pessanha de Carvalho L. Held J. Tandari´c T. Vianello R. Zorc B. Raji´c Z. Harmicines-Harmine and Cinnamic Acid Hybrids as Novel Antiplasmodial Hits. Eur. J. Med. Chem. 2020; 187: 1–16. https://doi.org/10.1016/j.ejmech.2019.111927
14. Amalan V. Vijayakumar N. Ramakrishnan A. p-Coumaric Acid Regulates Blood Glucose and Antioxidant Levels in Streptozotocin Induced Diabetic Rats. J. Chem. Pharm. Res. 2015; 7: 831–839.
15. Podobnik B. Stojan J. Lah L. Krasevec N. Seliskar M. Rizner TL. Rozman D. Komel R. CYP53A15 of Cochliobolus lunatus, a target for natural antifungal compounds. J. Med. Chem. 2008; 51: 3480–3486. https://doi.org/10.1021/jm800030e
16. Amalan V. Vijayakumar N. Ramakrishnan A. p-Coumaric Acid Regulates Blood Glucose and Antioxidant Levels in Streptozotocin Induced Diabetic Rats. J. Chem. Pharm. Res. 2015; 7: 831–839.
17. Amalan V. Vijayakumar N. Indumathi D. Antidiabetic and Antihyperlipidemic Activity of p –Coumaric Acid in Diabetic Rats, Role of Pancreatic GLUT 2: In Vivo Approach. Biomed. Pharmacother. 2016; 84: 230–236. https://doi.org/10.1016/j.biopha.2016.09.039
18. Ruwizhi N. and Aderibigbe BA. Cinnamic Acid Derivatives and Their Biological Efficacy. International Journal of Molecular Sciences 2020; 21, 5712. doi:10.3390/ijms21165712
19. Pavia DL. Lampman GM. Kriz GS. Vyvyan JR. Introduction of Spectroscopy, 4th edition, Brooks/Cole, USA. 2009.
20. Silverstein RM. Webster FX. Kiemle DJ. Spectrofotometric Identification of Organic Compound, 7th Edition, New York; John Willey and Sons, Inc. 2005.
21. Kavita RC. Rohan SA. Synthesis of Ethyl 2-(4-halobenzyl)-3-oxobutanoate and determination of its Biological activity by using prediction of activity spectra for substance. Asian Journal of Research in Pharmaceutical Sciences. 2022; 12(2): 102-6. Doi:10.52711/2231-5659.2022.00017
22. Sambhaji PV. Vijay NB. Sharad VK. Jagannath SJ. An Efficient One Pot Synthesis of Fused Pyrazolo [3’, 4’:4, 5]Pyrimido[2,1-b][1,3] Benzothiazole and its 2- Substituted Derivatives. Asian J. Research Chem. 2010; 3(1): 154-157.
23. https://ajrconline.org/HTMLPaper.aspx?Journal=Asian%20Journal%20of%20Research%20in%20Chemistry;PID=2010-3-1-40
24. Vijay NB. Sambhaji PV. Sarla NK. Jagannath SJ. Sharad VK. An Efficient One Pot Synthesis of Substituted Derivatives of Pyrimido Benzothiazole. Asian J. Research Chem. 2010; 3(1): 161-165. https://ajrconline.org/HTMLPaper.aspx?Journal=Asian%20Journal%20of%20Research%20in%20Chemistry;PID=2010-3-1-42
25. Athar J. Ayesha M. Review of Synthesis of Silver Nanoparticles from different Medicinal Plants and their Pharmacological Activities. Asian J. Pharm. Tech. 2021; 11(1): 88-93. doi: 10.5958/2231-5713.2021.00015.5
26. Kumar SS. Melchias G. Ravikumar P. Chandrasekar R. Kumaravel P. Bioinspired synthesis of silver nanoparticles using Euphorbia hirta leaf extracts and their antibacterial activity. Asian J. Pharm. Res. 2014; 4(1): 39-43.
27. Lunkad AS. Kothawade SN. Jadhav DV. Chaudhari PS. Bornare SP. Synthesis and Antimicrobial Activity of Some New Chalcones Containing Benzofuran and Benzofuran Schiff Bases. Research J. Pharm. and Tech. 2015; 8(3): 276-279. doi: 10.5958/0974-360X.2015.00046.3
28. Sandhya RM. Rohini C. Saikeerthi B. Mamata C. Green Synthesis of Novel Chalcone Derivatives, Characterization and its Antibacterial Activity. Research J. Science and Tech. 2019; 11(3): 183-185. doi: 10.5958/2349-2988.2019.00028.7
29. Karam A. El-Sharkawy. Mohammed MA. El-Brrati. Ibrahim AG. Ali M. Design and synthesis of thiazol derivatives with biological evaluations as antitumor agents. Research J. Pharm. and Tech. 2015; 8(5): 520-528. doi: 10.5958/0974-360X.2015.00087.6
30. Palled MS. Bhat AR. Patel A. Synthesis of New Series of Benzimidazole Acetic Acid Derivatives Bearing Thiophene Moiety for Anti-Tubercular Activity. Research J. Pharm. and Tech. 2015; 8(6): 674-678. doi: 10.5958/0974-360X.2015.00106.7
31. Dubey S. and Bhardwaj S. Synthesis of some Novel Benzimidazole-Oxothiazolidine Derivatives as Anti-Tubercular agents: Conventional Vs Microwave Assisted Approach. Research Journal of Science and Technology. 2022; 14(4): 199-7. doi: 10.52711/2349-2988.2022.00033
32. Prashant NU. Sambhaji PV. Sandip GS. Synthesis and antioxidant activity of some new substituted pyrazolo [4, 5-e]-4H-pyrimido[2,3-b] benzimidazoles. Asian J. Research Chem. 2017; 10(4): 573-576. doi: 10.5958/0974-4150.2017.00095.5