ABSTRACT:
The current research involved isolating exopolysaccharide (EPS) producer, Levilactobacillus brevis OR921362 from fermented cucumber using modified MRS media. LB-EPS (exopolysaccharide produced by the isolate) has exhibited antimicrobial activity and dose-response against indicator organisms like P aeroginosa MTCC10307, E coli MTCC452, K pneumoniae MTCC4031, S aureus MTCC3160. The minimum inhibitory concentration analysis of LB-EPS was investigated using Azithromycin as a standard drug. At the highest concentration of 1000µg/ml LB-EPS has exhibited 65%, 86%, 82%, and 81% inhibition rate, whereas the standard drug has displayed 46%, 79%, 64%, and 78% inhibition against indicator organisms P aeroginosa MTCC10307, E coli MTCC452, K pneumoniae MTCC4031, S aureus MTCC3160 respectively. LB-EPS was further studied for cytotoxicity assessment against the HEK 293 and HeLa cell lines. The percentage of decrease in viability with an increase in concentration of LB-EPS was observed, determining 319.87±2.64 µg/ml as the IC50 value. On HeLa cell line LB-EPS at the highest concentration, the percentage of viability and inhibition was observed to be 33.15% and 66.85% respectively with an IC50 value of 63.75±0.927µg/ml. For a comparative study, Cisplatin was used as a standard drug. Statistically, there was a significant difference in the antitumor activity at different LB-EPS and standard drug concentrations with p<0.05.
Cite this article:
Kondamudi Suman, Aruna Bandi. Effect of Exopolysaccharide produced by Levilactobacillus brevis OR921362 on HEK 293 and HeLa cell lines. Research Journal Pharmacy and Technology. 2025;18(12):5793-7. doi: 10.52711/0974-360X.2025.00835
Cite(Electronic):
Kondamudi Suman, Aruna Bandi. Effect of Exopolysaccharide produced by Levilactobacillus brevis OR921362 on HEK 293 and HeLa cell lines. Research Journal Pharmacy and Technology. 2025;18(12):5793-7. doi: 10.52711/0974-360X.2025.00835 Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-12-25
REFERENCES:
1. Sanalibaba, P., and Cakmak, G. A. Exopolysaccharides Production by Lactic Acid Bacteria. Applied Microbiology: Open Access. 2016; 2(2). https://doi.org/10.4172/2471-9315.1000115
2. Barcelos, M. C. S., Vespermann, K. A. C., Pelissari, F. M., and Molina, G. Current status of biotechnological production and applications of microbial exopolysaccharides. Critical Reviews in Food Science and Nutrition. 2019; 60(9): 1475–1495. https://doi.org/10.1080/10408398.2019.1575791
3. Tukenmez, U., Aktas, B., Aslim, B., and Yavuz, S. The relationship between the structural characteristics of lactobacilli-EPS and its ability to induce apoptosis in colon cancer cells in vitro. Scientific Reports. 2019; 9(1). https://doi.org/10.1038/s41598-019-44753-8
4. Adebayo-Tayo, B., Ishola, R., and Oyewunmi, T. Characterization, antioxidant and immunomodulatory potential on exopolysaccharide produced by wild type and mutant Weissella confusa strains. Biotechnology Reports. 2018; 19: e00271. https://doi.org/10.1016/j.btre.2018.e00271
5. Lakra, A. K., Domdi, L., Tilwani, Y. M., and Arul, V. Physicochemical and functional characterization of mannan exopolysaccharide from Weissella confusa MD1 with bioactivities. International Journal of Biological Macromolecules. 2020; 143: 797–805. https://doi.org/10.1016/j.ijbiomac.2019.09.139
6. Biliavska, L., Pankivska, Y., Povnitsa, O., and Zagorodnya, S. Antiviral Activity of Exopolysaccharides Produced by Lactic Acid Bacteria of the Genera Pediococcus, Leuconostoc and Lactobacillus against Human Adenovirus Type 5. Medicina. 2019; 55(9): 519. https://doi.org/10.3390/medicina55090519
7. Norouzi, Z., Salimi, A., Halabian, R., and Fahimi, H. Nisin, a potent bacteriocin and anti-bacterial peptide, attenuates expression of metastatic genes in colorectal cancer cell lines. Microbial Pathogenesis. 2018; 123: 183–189. https://doi.org/10.1016/j.micpath.2018.07.006
8. Riaz Rajoka, M. S., Mehwish, H. M., Siddiq, M., Haobin, Z., Zhu, J., Yan, L., Shao, D., Xu, X., and Shi, J. Identification, characterization, and probiotic potential of Lactobacillus rhamnosus isolated from human milk. LWT. 2017; 84: 271–280. https://doi.org/10.1016/j.lwt.2017.05.055
9. Nurgali K, Jagoe RT, Abalo R. Editorial: adverse effects of cancer chemotherapy: anything new to improve tolerance and reduce sequelae? Front Pharmacol. 2018; 9:245.
10. Saadat YR, Khosroushahi AY, Gargari BP. A comprehensive review of anticancer, immunomodulatory and health beneficial effects of the lactic acid bacteria exopolysaccharides. Carbohydr Polym. 2019; 217: 79–89.
11. Ismail, B., and Nampoothiri, K. M. Exposition of antitumour activity of a chemically characterized exopolysaccharide from a probiotic Lactobacillus plantarum MTCC 9510. Biologia. 2013; 68(6): 1041–1047. https://doi.org/10.2478/s11756-013-0275-2
12. Wang, K., Li, W., Rui, X., Chen, X., Jiang, M., and Dong, M. Characterization of a novel exopolysaccharide with antitumor activity from Lactobacillus plantarum 70810. International Journal of Biological Macromolecules. 2014; 63: 133–139. https://doi.org/10.1016/j.ijbiomac.2013.10.036
13. Abd El Ghany, K., Hamouda, R., Abd Elhafez, E., Mahrous, H., Salem-Bekhit, M., and Hamza, H. A. A potential role of Lactobacillus acidophilusLA1 and its exopolysaccharides on cancer cells in male albino mice. Biotechnology and amp; Biotechnological Equipment. 2015; 29(5): 977–983.
14. Bomfim, V. B., Pereira Lopes Neto, J. H., Leite, K. S., de Andrade Vieira, É., Iacomini, M., Silva, C. M., Olbrich dos Santos, K. M., and Cardarelli, H. R. Partial characterization and antioxidant activity of exopolysaccharides produced by Lactobacillus plantarum CNPC003. LWT. 2020; 127: 109349. https://doi.org/10.1016/j.lwt.2020.109349
15. Nehal, F., Sahnoun, M., Smaoui, S., Jaouadi, B., Bejar, S., and Mohammed, S. Characterization, high production and antimicrobial activity of exopolysaccharides from Lactococcus lactis F-mou. Microbial Pathogenesis. 2019; 32: 10–19. https://doi.org/10.1016/j.micpath.2019.04.018
16. Abraham, N., Namachivayam, C., and Sundaramoorthy, S. Lactobacillus- An friendly Bacteria. International Journal of Technology. 2021; 70–77. https://doi.org/10.52711/2231-3915.2021.00010
17. Bajpai, V. K., Majumder, R., Rather, I. A., and Kim, K. Extraction, isolation and purification of exopolysaccharide from lactic acid bacteria using ethanol precipitation method. Bangladesh Journal of Pharmacology. 2016; 11(3): 573. https://doi.org/10.3329/bjp.v11i3.27170
18. Ng, I.-S., and Xue, C. Enhanced exopolysaccharide production and biological activity of Lactobacillus rhamnosus ZY with calcium and hydrogen peroxide. Process Biochemistry. 2017; 52: 295–304. https://doi.org/10.1016/j.procbio.2016.10.006
19. Yu, Y.-J., Chen, Z., Chen, P. T., and Ng, I.-S. Production, characterization, and antibacterial activity of exopolysaccharide from a newly isolated Weissella cibaria under sucrose effect. Journal of Bioscience and Bioengineering. 2018; 126(6): 769–777. https://doi.org/10.1016/j.jbiosc.2018.05.028
20. Kowalska-Krochmal, B., and Dudek-Wicher, R. The Minimum Inhibitory Concentration of Antibiotics: Methods, Interpretation, Clinical Relevance. Pathogens. 2021; 10(2): 165. https://doi.org/10.3390/pathogens10020165
21. Van de Loosdrecht, A. A., Beelen, R. H. J., Ossenkoppele, G. J., Broekhoven, M. G., and Langenhuijsen, M. M. A. C. 1994. A tetrazolium-based colorimetric MTT assay to quantitate human monocyte mediated cytotoxicity against leukemic cells from cell lines and patients with acute myeloid leukemia. Journal of Immunological Methods. 1994; 174(1–2): 311–320. https://doi.org/10.1016/0022-1759(94)90034-5
22. El-Waseif, A. A., Abobaker, R. A., Abdel-Monem, M. O., A. A., A., and Hassan, M. G. The Lactobacillus brevis Prebiotic Pure Exo polysaccharide and its Nano crystalline Characterization, anti-colon cancer and cytotoxicity. Research Journal of Pharmacy and Technology. 2021; 5998–6002. https://doi.org/10.52711/0974-360x.2021.01042
23. Kondamudi Suman and Aruna Bandi. Pharmacognosy of Exopolysaccharide produced by Levilactobacillus brevis. Bioinfolet. 2023; 20 (4): 747-750
24. Jeong, D., Kim, D.-H., Kang, I.-B., Kim, H., Song, K.-Y., Kim, H.-S., and Seo, K.-H. Characterization and antibacterial activity of a novel exopolysaccharide produced by Lactobacillus kefiranofaciens DN1 isolated from kefir. Food Control. 2017; 78: 436–442, https://doi.org/10.1016/j.foodcont.2017.02.033
25. Firth, A., and Prathapan, P. Azithromycin: The First Broad-spectrum Therapeutic. European Journal of Medicinal Chemistry. 2020; 207: 112739. https://doi.org/10.1016/j.ejmech.2020.112739
26. Jaleel, Samanje., and Kiliç, A. O. Antimicrobial Action of isolated Probiotic Lactobacillus plantarum from Different Fermented Dairy Products from Trabzon City. Research Journal of Pharmacy and Technology. 2020; 13(5): 2445. https://doi.org/10.5958/0974-360x.2020.00438.2
27. Shanthi V., Jemima Florence Borgia, Bhavani S. Sathya M. Inhibitory Effects of Lactobacillus Species Against Human Pathogens. Research J. Pharmacognosy and Phytochemistry. 2011; 3(4): 174-177.
28. Zhou, X., Hong, T., Yu, Q., Nie, S., Gong, D., Xiong, T., and Xie, M. Exopolysaccharides from Lactobacillus plantarum NCU116 induce c-Jun dependent Fas/Fasl-mediated apoptosis via TLR2 in mouse intestinal epithelial cancer cells. Scientific Reports. 2017; 7(1). https://doi.org/10.1038/s41598-017-14178-2
29. Sungur, T., Aslim, B., Karaaslan, C., and Aktas, B. Impact of Exopolysaccharides (EPSs) of Lactobacillus gasseri strains isolated from human vagina on cervical tumor cells (HeLa). Anaerobe. 2017; 47: 137–144. https://doi.org/10.1016/j.anaerobe.2017.05.013.
30. Ibrahim, A., Siswandono, S., and Prajogo EW, B. Anticancer activity of Peronema canescens Jack leaves extracts against human cells: HT-29 and HeLa in vitro. Research Journal of Pharmacy and Technology. 2022; 4739–4745. https://doi.org/10.52711/0974-360x.2022.00796
31. Proboningrat, A., Jayanti, S., Fadholly, A., Ansori, A. N. M., Putri, N., Kusala, M. K. J., Sudjarwo, S. A., Rantam, F. A., and Achmad, A. B. The Cytotoxicity of Ethanolic Extract of Allium cepa L. on Hela Cell Lines. Research Journal of Pharmacy and Technology. 2021; 4969–4972. https://doi.org/10.52711/0974-360x.2021.00864
32. Dwira, S., Fadhillah, M. R., Fadilah, F., Azizah, N. N., Putrianingsih, R., and Kusmardi, K. Cytotoxic Activity of Ethanol and Ethyl Acetate Extract of Kenikir (Cosmos caudatus) against Cervical Cancer Cell Line (HELA). Research Journal of Pharmacy and Technology. 2019; 12(3): 1225. https://doi.org/10.5958/0974-360x.2019.00203.8
33. Nirmala, S., Sabapathi, P. N., Sudhakar, M., Bathula, N., and Sravanthi, Y. Investigation of In vitro Anti-cancer property of Adhatoda vasica in Hela, HepG2, MCF-7, MDAMB-231 Cell Lines. Research Journal of Pharmacognosy and Phytochemistry. 2019; 11(4): 212. https://doi.org/10.5958/0975-4385.2019.00036.0
34. Pavithra, S., and Banu, N. A First Report on the Antiproliferative activity of Sodium Copper Chlorophyllin from Endangered Medicinal Plant Rhinacanthus nasutus on HepG2 and HeLa Cell Lines. Research Journal of Pharmacy and Technology. 2017; 10(1): 325. https://doi.org/10.5958/0974-360x.2017.00066.x
35. Ragunathan, A., Ravi, L., and Krishnan, K. Anticancer cytotoxic activity of pentane-2, 4-dione extracted from the leaves of Cordia sebestena. Research Journal of Pharmacy and Technology. 2018; 11(6): 2191. https://doi.org/10.5958/0974-360x.2018.00405.5