Author(s):
Aisha Siddiqua, Pervaiz Ali, Saifur Rehman, Shakeeb Ullah, Kholik Kholik, Muhammad Munawaroh, Akhmad Sukri, Munawer Pradana, Sana Ullah, Iwan Doddy Dharmawibawa, Teguh Hari Sucipto
Email(s):
teguhharisucipto@staf.unair.ac.id
DOI:
10.52711/0974-360X.2025.00735
Address:
Aisha Siddiqua1, Pervaiz Ali1, Saifur Rehman2, Shakeeb Ullah2, Kholik Kholik3, Muhammad Munawaroh4, Akhmad Sukri5, Munawer Pradana6, Sana Ullah1, Iwan Doddy Dharmawibawa7, Teguh Hari Sucipto8*
1Gomal Center of Biochemistry and Biotechnology Gomal University, RV9W+GVJ, Indus HWY, Dera Ismail Khan 29111, Khyber Pakhtunkhwa, Pakistan.
2Faculty of Veterinary and Animal Sciences, Gomal University, RV9W+GVJ, Indus HWY, Dera Ismail Khan 29111, Khyber Pakhtunkhwa, Pakistan.
3Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Pemuda No.59A, Mataram City 83125, Indonesia.
4Department of Basic Medical Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Pemuda No.59A, Mataram City 83125, Indonesia.
5Department of Biology Education, Universitas Pendidikan Mandalika, Jl. Pemuda No.59A, Mataram City 83125, Indonesia.
6Department of Reproductive, Faculty of Veterinary Medicine, Universitas Pendidika
Published In:
Volume - 18,
Issue - 10,
Year - 2025
ABSTRACT:
The lungs problems have been identified has as one the biggest factors of death and disability worldwide. Though transplantation of lungs is often the sole treatment option for numerous individuals, this procedure is severely constrained due to a scarcity of donor organs. The possibility for managing numerous ailments that have previously been incurable makes the technique of tissue engineering an exciting potential development, which deserves cautious consideration. As a result, the application of tissue technology and polymers for lungs bioengineering has drawn considerable interest from researchers. A range of scaffolding, including those made of polymers, lipids that are solid (SL), liposomes, as well as metals, have been successfully used in numerous experiments to bioengineer the lungs. Furthermore, advances in nanotechnology have created a remarkable chance to improve the qualities of tissue-engineered scaffolding even more. In order to further, simulate the extracellular matrix and surrounding that comprises real pulmonary tissue, nanotechnology efforts are primarily focused on providing innovative alternatives, notably for detecting and the therapy of lungs carcinoma by targeted drug delivery system. The word "Nanotechnology" has increased in popularity over the past several decades and is now nearly used interchangeably with novel and extremely exciting concepts. Nanotechnologies holds tremendous potential for addressing issues with current lung regeneration therapies, but it is still in the early stages and requires additional in vivo and extensive research in clinical trials.
Cite this article:
Aisha Siddiqua, Pervaiz Ali, Saifur Rehman, Shakeeb Ullah, Kholik Kholik, Muhammad Munawaroh, Akhmad Sukri, Munawer Pradana, Sana Ullah, Iwan Doddy Dharmawibawa, Teguh Hari Sucipto. Nano-engineered biomaterials: An Alternative Route for Drug Delivery in Lung Bioengineering. Research Journal of Pharmacy and Technology. 2025;18(10):5089-6. doi: 10.52711/0974-360X.2025.00735
Cite(Electronic):
Aisha Siddiqua, Pervaiz Ali, Saifur Rehman, Shakeeb Ullah, Kholik Kholik, Muhammad Munawaroh, Akhmad Sukri, Munawer Pradana, Sana Ullah, Iwan Doddy Dharmawibawa, Teguh Hari Sucipto. Nano-engineered biomaterials: An Alternative Route for Drug Delivery in Lung Bioengineering. Research Journal of Pharmacy and Technology. 2025;18(10):5089-6. doi: 10.52711/0974-360X.2025.00735 Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-10-74
REFERENCES:
1. Akram KM, Patel N, Spiteri MA, Forsyth NR. Lung regeneration: endogenous and exogenous stem cell mediated therapeutic approaches. Int J Mol Sci. 2016; 17(1): 128. doi:10.3390/ijms17010128
2. Al-Qadi S, Grenha A, Carrión-Recio D, Seijo B, Remuñán-López C. Microencapsulated chitosan nanoparticles for pulmonary protein delivery: in vivo evaluation of insulin-loaded formulations. J Control Release. 2012; 157(3): 383-390. doi:10.1016/j.jconrel.2011.10.030
3. Avila-Olias M, Pegoraro C, Battaglia G, Canton I. Inspired by nature: fundamentals in nanotechnology design to overcome biological barriers. Ther Deliv. 2013; 4(1): 27-43. doi:10.4155/tde.12.80
4. Baber RJ, Panay N, Fenton ATI, W G. 2016 IMS Recommendations on women’s midlife health and menopause hormone therapy. Climacteric. 2016; 19(2): 109-150. doi:10.3109/13697137.2016.1132389
5. Bachler G, Losert S, Umehara Y, von Goetz N, Rodriguez-Lorenzo L, Petri-Fink A, Hungerbuehler K. Translocation of gold nanoparticles across the lung epithelial tissue barrier: Combining in vitro and in silico methods to substitute in vivo experiments. Part Fibre Toxicol. 2015; 12(1): 1-18. doi:10.1186/s12989-015-0113-6
6. Badrzadeh F, Rahmati-Yamchi M, Badrzadeh K, Valizadeh A, Zarghami N, Farkhani SM, Akbarzadeh A. Drug delivery and nanodetection in lung cancer. Artif Cells Nanomed Biotechnol. 2016; 44(2): 618-634. doi:10.3109/21691401.2015.1099136
7. Bahmanpour AH, Navaei T, Ahadi F. Pulmonary system responses to biomaterials. In: Handbook of Biomaterials Biocompatibility. Woodhead Publishing; 2020. p. 653-665.
8. Bajes HR, Oran SA, Al-Dujaili EA. Investigating the Anti-Viral and Anti-Bacterial activities of Jordanian Medicinal plants: A narrative review. Res J Pharm Technol. 2022; 15(1): 127-136. doi:10.5958/0974-360X.2022.00024.9
9. Biswas E, Banerjee KK, Karmakar S, Karmakar S, Pal TK. Preparation and evaluation of eprosartan mesylate loaded PLGA nanostructures. Res J Pharm Technol. 2022; 15(1): 103-112. doi:10.5958/0974-360X.2022.00020.1
10. Balestrini JL, Niklason LE. Extracellular matrix as a driver for lung regeneration. Ann Biomed Eng. 2015; 43: 568-576. doi:10.1007/s10439-015-1275-8
11. Bayisa TK, Bule MH, Lenjisa JL. The potential of nano technology based drugs in lung cancer management. The Pharma Innovation. 2015; 4(4, Part B):77. doi:10.22271/tpi.2015.v4.i4.511
12. Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine. 2015: 975-999. doi:10.2147/IJN.S68878
13. Çağadaş M, Sezer A D, Bucak S. Liposomes as potential drug carrier systems for drug delivery. Application of nanotechnology in drug delivery. 2014; 1: 1-50.
14. Calle EA, Ghaedi M, Sundaram S, Sivarapatna A, Tseng MK, Niklason LE. Strategies for whole lung tissue engineering. IEEE Trans Biomed Eng. 2014; 61(5): 1482-1496. doi:10.1109/TBME.2014.2315802
15. Carter BD, Abnet CC, Feskanich D, Freedman ND, Hartge P, Lewis CE, Jacobs EJ. Smoking and mortality—beyond established causes. N Engl J Med. 2015; 372(7): 631-640. doi:10.1056/NEJMra1401461
16. Celli BR, Decramer M, Wedzicha JA, Wilson KC, Agustí A, Criner GJ, ZuWallack RL. An official American Thoracic Society/European Respiratory Society statement: research questions in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2015; 191(7): e4-e27. doi:10.1164/rccm.201502-0241ST
17. Chen FM, Liu X. Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci. 2016; 53: 86-168. doi:10.1016/j.progpolymsci.2015.07.002
18. Chen S, Yang K, Tuguntaev RG, Mozhi A, Zhang J, Wang PC, Liang XJ. Targeting tumor microenvironment with PEG-based amphiphilic nanoparticles to overcome chemoresistance. Nanomedicine. 2016;12(2):269-286. doi:10.2217/nnm.15.0285
19. Choi WI. Pneumothorax. Tuberc Respir Dis. 2014; 76(3): 99-104. doi:10.4046/trd.2014.76.3.99
20. Christman KL. Biomaterials for tissue repair. Science. 2019; 363(6425): 340-341. doi:10.1126/science.aaw3467
21. Cipolla D, Shekunov B, Blanchard J, Hickey A. Lipid-based carriers for pulmonary products: preclinical development and case studies in humans. Adv Drug Deliv Rev. 2014; 75: 53-80. doi:10.1016/j.addr.2014.05.007
22. Conde J, Tian F, Hernández Y, Bao C, Cui D, Janssen KP, Ibarra MR, Baptista PV, Stoeger T, de la Fuente JM. In vivo tumor targeting via nanoparticle-mediated therapeutic siRNA coupled to inflammatory response in lung cancer mouse models. Biomaterials. 2013; 34: 7744–7753. doi:10.1016/j.biomaterials.2013.06.021
23. Correia VG, Bonifácio VDB, Raje VP, Casimiro T, Moutinho G, da Silva CL, Pinho MG, Aguiar-Ricardo A. Oxazoline-based antimicrobial oligomers: synthesis by CROP using supercritical CO2. Macromol Biosci. 2011; 11(9): 1128-1137. doi:10.1002/mabi.201100177
24. Cortiella J, Nichols JE, Kojima K, Bonassar LJ, Dargon P, Roy AK, et al. Tissue-engineered lung: an in vivo and in vitro comparison of polyglycolic acid and pluronic F-127 hydrogel/somatic lung progenitor cell constructs to support tissue growth. Tissue Eng. 2006; 12(5): 1213-25. doi:10.1089/ten.2006.12.1213
25. Daphne J, Francis A, Mohanty R, Ojha N, Das N. Green synthesis of antibacterial silver nanoparticles using yeast isolates and its characterization. Res J Pharm Technol. 2018; 11(1): 83-92. doi:10.5958/0974-360X.2018.00017.3
26. Dhanjal DS, Mehta M, Chopra C, Singh R, Sharma P, Chellappan DK, Satija S. Novel controlled release pulmonary drug delivery systems: current updates and challenges. In: Modeling and Control of Drug Delivery Systems. Academic Press; 2021. p. 253-272.
27. Din FU, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, Zeb A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomed. 2017; 12: 7291-7309. doi:10.2147/IJN.S136392
28. Dreaden EC, Austin LA, Mackey MA, El-Sayed MA. Size matters: gold nanoparticles in targeted cancer drug delivery. Ther Deliv. 2012; 3(4): 457-478. doi:10.4155/tde.12.20
29. Dua K, Rapalli VK, Shukla SD, Singhvi G, Shastri MD, Chellappan DK, Hansbro PM. Multi-drug resistant Mycobacterium tuberculosis & oxidative stress complexity: Emerging need for novel drug delivery approaches. Biomed Pharmacother. 2018; 107: 1218-1229. doi:10.1016/j.biopha.2018.08.072
30. Ferkol T, Schraufnagel D. The global burden of respiratory disease. Ann Am Thorac Soc. 2014;11(3):404-406. doi:10.1513/AnnalsATS.201401-040AW
31. Gao W, Hu CMJ, Fang RH, Zhang L. Liposome-like nanostructures for drug delivery. J Mater Chem B. 2013; 1(48): 6569-6585. doi:10.1039/c3tb21117g
32. Gomaa SK, Zaki RA, El-Behery RR, El-Refai HA. Eco-friendly biogenic synthesis of metallic MgO nanoparticles as potent antibacterial and antibiofilm. Res J Pharm Technol. 2022; 15(1): 63-70. doi:10.5958/0974-360X.2022.00007.4
33. Garcia O, Carraro G, Navarro S, Bertoncello I, Mcqualter J, Driscoll B, Warburton D. Cell-based therapies for lung disease. Br Med Bull. 2012; 101: 147-161. doi:10.1093/bmb/lds024
34. Gaur PK, Mishra S, Purohit S. Solid lipid nanoparticles of guggul lipid as drug carrier for transdermal drug delivery. Biomed Res Int. 2013; 2013: 243509. doi:10.1155/2013/243509
35. Geiser M, Quaile O, Wenk A, Wigge C, Eigeldinger-Berthou S, Hirn S, Kreyling WG. Cellular uptake and localization of inhaled gold nanoparticles in lungs of mice with chronic obstructive pulmonary disease. Part Fibre Toxicol. 2013; 10(1): 1-10. doi:10.1186/1743-8977-10-6
36. Gilpin SE, Ott HC. Using nature’s platform to engineer bio-artificial lungs. Ann Am Thorac Soc. 2015; 12(Supplement 1):S45-S49. doi:10.1513/AnnalsATS.201406-226PD
37. Hawkins F, Kotton DN. Embryonic and induced pluripotent stem cells for lung regeneration. Ann Am Thorac Soc. 2015; 12(Supplement 1): S50-S53. doi:10.1513/AnnalsATS.201406-227PD
38. He Z, Shi Z, Sun W, Ma J, Xia J, Zhang X, Huang J. Hemocompatibility of folic-acid-conjugated amphiphilic PEG-PLGA copolymer nanoparticles for co-delivery of cisplatin and paclitaxel: treatment effects for non-small-cell lung cancer. Tumor Biol. 2016;37:7809-7821. doi:10.1007/s13277-016-4842-y
39. Hirsch FR, Suda K, Wiens J, Bunn PA. New and emerging targeted treatments in advanced non-small-cell lung cancer. Lancet. 2016; 388(10048): 1012-1024. doi:10.1016/S0140-6736(16)00758-8
40. Huang SX, Islam MN, O'Neill J, Hu Z, Yang YG, Chen YW, Snoeck HW. Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nat Biotechnol. 2014; 32(1): 84-91. doi:10.1038/nbt.2447
41. Huang SX, Islam MN, O'Neill J, Hu Z, Yang YG, Chen YW, Snoeck HW. Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nat Biotechnol. 2014; 32(1): 84-91. doi:10.1038/nbt.2447
42. Ivanova EP, Bazaka K, Crawford RJ. Advanced synthetic polymer biomaterials derived from organic sources. In: New Functional Biomaterials for Medicine and Healthcare; Ivanova EP, Bazaka K, Crawford RJ, eds. 2014. p. 71-99.
43. Joshi G, Tiwari A, Upadhyay P, Tiwari V. Development and evaluation of nano herbosomes of Eleocarpus ganitrus for antioxidant activity. Res J Pharm Technol. 2022; 15(1): 97-102. doi:10.5958/0974-360X.2022.00006.2
44. Joshi NC, Joshi E, Singh A. Biological Synthesis, Characterisations and Antimicrobial activities of manganese dioxide (MnO2) nanoparticles. Res J Pharm Technol. 2020; 13(1): 135-140. doi:10.5958/0974-360X.2020.00029.6
45. Mugada VK, Kolkota RK, Srinivas SK, Rasheed A. Effectiveness of oral nano-particle based Vitamin D solution in pain management: a prospective cross-sectional study. Res J Pharm Technol. 2021; 14(1): 6-10. doi:10.5958/0974-360X.2021.00002.7
46. Park JH, Kwon S, Lee M, Chung H, Kim JH, Kim YS, Jeong SY. Self-assembled nanoparticles based on glycol chitosan bearing hydrophobic moieties as carriers for doxorubicin: in vivo biodistribution and anti-tumor activity. Biomaterials. 2006; 27(1): 119-126. doi:10.1016/j.biomaterials.2005.04.042
47. Patil NA, Bandgar SA, Shelake SS, Patil PS, Patil SS. Design, Development and Evaluation of Fast Dissolving Tablet of Antiasthmatic Drug. Res J Pharm Technol. 2019; 12(1): 142-148. doi:10.5958/0974-360X.2019.00029.6
48. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007; 2(12): 751-760. doi:10.1038/nnano.2007.387
49. Samavedi S, Poindexter LK, Van Dyke M, Goldstein AS. Synthetic biomaterials for regenerative medicine applications. In: Regenerative medicine applications in organ transplantation. Elsevier; 2014. p. 81-99.
50. Sahib RA. Effects of zinc oxide nanoparticles on the growth inhibition of fungi isolated from cream cosmetics. Res J Pharm Technol. 2019; 12(1): 123-128. doi:10.5958/0974-360X.2019.00025.4
51. Sukumaran SK. Development and evaluation of naringenin loaded chitosan nanoparticles for improved treatment of neurotoxicity. Res J Pharm Technol. 2020; 13(1): 129-134. doi:10.5958/0974-360X.2020.00031.1