Author(s): Kumud P. Bhendarkar, Pramod Khedekar, Deepali M. Wanode, Megha P. Ambatkar

Email(s): kumud.mendhe123@gmail.com

DOI: 10.52711/0974-360X.2025.00734   

Address: Kumud P. Bhendarkar*, Pramod Khedekar, Deepali M. Wanode, Megha P. Ambatkar
Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University Nagpur, Nagpur 440033, Maharashtra, India.
*Corresponding Author

Published In:   Volume - 18,      Issue - 10,     Year - 2025


ABSTRACT:
Pyrazoline and its derivatives continue to be widely used heterocycles in drug development and design. The scientific community has studied pyrazoline derivatives in detail due to their wide range of biological activity, particularly their anti-EGFR properties. Since EGFR dysfunction has been linked to several cancers, overexpression of EGFR signalling promotes tumour growth by inhibiting apoptosis. As a result, EGFR represents a potential target for cancer treatment. Many anti-EGFR drugs are on the market, including dacomitinib, erlotinib, and afatinib. However, nearly all these medications have limited therapeutic efficacy because of their lack of selectivity and significant side effects. New and effective anti-EGFR therapeutics with little toxicity is required to address this. Pyrazoline derivatives have been studied as a potential pharmacophore for creating novel drugs with improved efficacy, reduced toxicity, and desired pharmacokinetic characteristics to counteract therapeutic resistance to EGFR inhibitors. Five years of progress toward EGFR-blocking pyrazoline-based compound research are summarized in the current review.


Cite this article:
Kumud P. Bhendarkar, Pramod Khedekar, Deepali M. Wanode, Megha P. Ambatkar. Pyrazoline Derivatives as EGFR Inhibitor: Mini Review. Research Journal of Pharmacy and Technology. 2025;18(10):5081-8. doi: 10.52711/0974-360X.2025.00734

Cite(Electronic):
Kumud P. Bhendarkar, Pramod Khedekar, Deepali M. Wanode, Megha P. Ambatkar. Pyrazoline Derivatives as EGFR Inhibitor: Mini Review. Research Journal of Pharmacy and Technology. 2025;18(10):5081-8. doi: 10.52711/0974-360X.2025.00734   Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-10-73


REFERENCES:
1.    Saini, A.; Kumar M., Bhatt, S., Saini, V., Malik, A. Cancer Causes and Treatments. International Journal of Pharmaceutical Sciences and Research. 2020; 11(7): 3121.: https://doi.org/10.13040/ijpsr.0975-8232.
2.    Wilson, B. E.; Sullivan, R.; Peto, R.; Abubakar, B.; Booth, C.; Werutsky, G.; Adams, C.; Saint Raymond, A.; Fleming, T. R.; Lyerly, K.; Gralow, J. R. Global Cancer Drug Development—a Report from the 2022 Accelerating Anticancer Agent Development and Validation Meeting. JCO Global Oncology. 2023, No. 9. https://doi.org/10.1200/go.23.00294.
3.    Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of Multidrug Resistance in Cancer Chemotherapy. International Journal of Molecular Sciences. 2020; 21(9): 3233. https://doi.org/10.3390/ijms21093233.
4.    Choi, H. Y.; Chang, J.E. Targeted Therapy for Cancers: From Ongoing Clinical Trials to FDA-Approved Drugs. International Journal of Molecular Sciences. 2023; 24(17): 13618. https://doi.org/10.3390/ijms241713618.
5.    Jacobs, A. T.; Martinez Castaneda-Cruz, D.; Rose, M. M.; Connelly, L. Targeted Therapy for Breast Cancer: An Overview of Drug Classes and Outcomes. Biochemical Pharmacology. 2022, 204, 115209. https://doi.org/10.1016/j.bcp.2022.115209.
6.    Lee,Y. T.; Tan, Y.J.; Oon, C. E. Molecular Targeted Therapy: Treating Cancer with Specific European Journal of Pharmacology. 2018; 834: 188–196. https://doi.org/10.1016/j.ejphar.2018.07.034.
7.    Zhang, J.; Sun, J.; Bakht, S.; Hassan, W. Recent Development and Future Prospects of Molecular Targeted Therapy in Prostate Cancer. Current Molecular Pharmacology. 2022;15(1): 159–169. https://doi.org/10.2174/1874467214666210608141102.
8.    TS Kristedja; Morgan, R.; Cristea, M. Targeted Agents in Ovarian Cancer. Women’s Health. 2010; 6(5): 679–694. https://doi.org/10.2217/whe.10.48.
9.    Purushothaman, B.; Suganthi, N.; Jothi, A.; Shanmugam, K. Molecular Docking Studies of Potential Anticancer Agents from Ocimum Basilicum L. Against Human Colorectal Cancer Regulating Genes: An Insilico Approach. Research Journal of Pharmacy and Technology. 2019; 12(7): 3423. https://doi.org/10.5958/0974-360x.2019.00579.1.
10.    Du, Z.; Lovly, C. M. Mechanisms of Receptor Tyrosine Kinase Activation in Cancer. Molecular Cancer. 2018; 17(1): https://doi.org/10.1186/s12943-018-0782-4.
11.    Hubbard, S. R.; Miller, W. T. Receptor Tyrosine Kinases: Mechanisms of Activation and Signaling. Current Opinion in Cell Biology. 2007; 19(2): 117–123. https://doi.org/10.1016/j.ceb.2007.02.010
12.    Lemmon, M. A.; Schlessinger, J. Cell Signaling by Receptor Tyrosine Kinases. Cell. 2010; 141(7): 1117–1134. https://doi.org/10.1016/j.cell.2010.06.011
13.    Trenker, R.; Jura, N. Receptor Tyrosine Kinase Activation: From the Ligand Perspective. Current Opinion in Cell Biology. 2020; 63: 174–185. https://doi.org/10.1016/j.ceb.2020.01.016
14.    Chow, L.; Chen, C.; Raben, D. EGFR Inhibitors and Radiation in HNSCC. Current Cancer Therapy Reviews. 2007; 3(4): 255–266. https://doi.org/10.2174/157339407782497004.
15.    Kumar, M. S.; M. Vijey Aanandhi. Design, Molecular Docking, Synthesis and Biological Evaluation of 5, 7 Dimethyl Pyrido(2, 3-d)Pyrimidin-4-One and 4,5 Dihydro Pyrazolo (3, 4-d) Pyrimidines for Cytotoxic Activity. Research Journal of Pharmacy and Technology. 2021: 3029–3038. https://doi.org/10.52711/0974-360x.2021.00530
16.    Kavitha K; Srinivasan N; Mohan S; Suresh R. Insilco Design and Potential Cytotoxic Agents EGFR Inhibitors of 4(3H) Quinazolinone Derivatives. Research Journal of Pharmacy and Technology. 2021: 4849–4855. https://doi.org/10.52711/0974-360x.2021.00842
17.    Kedar, M. S.; Shirbhate, M. P.; Chauhan, R.; Sharma, S.; Verma, A. Design Synthesis and Evaluation of Anticancer Pyrazole Derivatives of Chalcone Scaffold. Research Journal of Pharmacy and Technology. 2020; 13(1): 342. https://doi.org/10.5958/0974-360x.2020.00069.4.
18.    Bhat, K. I.; Kumar, A. Synthesis and Biological Evaluation of Some Novel Pyrazoline Derivatives Derived from Chalcones. Research Journal of Pharmacy and Technology. 2017; 10(5): 1344. https://doi.org/10.5958/0974-360x.2017.00238.4.
19.    Redhwan, M. A. M.; Deka, G.; Varghese, M. M. Synthesis and Molecular Docking Studies of Some New Pyrazoline Derivatives for Antimicrobial Properties. Research Journal of Pharmacy and Technology 2020; 13(10): 4629. https://doi.org/10.5958/0974-360x.2020.00815.x
20.    Bhat, K. I.; Revanasiddappa, B. C.; Kumar, M. V.; Felicity, B.; Kumari, R.; Kumar, A. Synthesis and In-Vitro Anti-Inflammatory Activity of New Pyrazoline Derivatives. Research Journal of Pharmacy and Technology. 2018; 11(9): 3969. https://doi.org/10.5958/0974-360x.2018.00729.1
21.    Shroff, inakshi; Daharwal, S. J.; Yashwant Swarnakar. Synthesis and Characterization of Indolyl-Pyrazoline and Their Evaluation of Anti-Inflammatory Activity. Research Journal of Pharmacy and Technology 2017; 10(3): 677–677. https://doi.org/10.5958/0974-360x.2017.00126.3.
22.    T Prabha; P Aishwaryah; E Manickavalli; R Chandru; G Arulbharathi; A Anu; Sivakumar, T. A Chalcone Annulated Pyrazoline Conjugates as a Potent Antimycobacterial Agents: Synthesis and in Silico Molecular Modeling Studies. Research Journal of Pharmacy and Technology. 2019; 12(8): 3857–3857. https://doi.org/10.5958/0974-360x.2019.00663.2
23.    Revanasiddappa, B. C.; Kumar, M. V.; Nayak, P.; Ali, A. R.; Jisha, M. S. Synthesis, Antibacterial and Antifungal Evaluation of Novel Pyrazoline Derivatives. Research Journal of Pharmacy and Technology. 2017; 10(5): 1481–1481. https://doi.org/10.5958/0974-360x.2017.00261.x.
24.    Matiadis, D.; Sagnou, M. Pyrazoline Hybrids as Promising Anticancer Agents: An Up-To-Date Overview. International Journal of Molecular Sciences. 2020; 21(15): 5507. https://doi.org/10.3390/ijms21155507.
25.    Singh, N.; Gupta, M. Therapeutic Journey of Pyrazolines as EGFR Tyrosine Kinase Inhibitors: An Insight into Structure Activity Relationship. Current Bioactive Compounds. 2020; 16. https://doi.org/10.2174/1573407216666200128155640.
26.    Sari, S.; Tri Murti Andayani; Dwi Endarti; Kartika Widayati. Health-Related Quality of Life in Non-Small Cell Lung Cancer (NSCLC) Patients with Mutation of Epidermal Growth Factor Receptor (EGFR) in Indonesia. Research Journal of Pharmacy and Technology 2020; 13(1): 443–443. https://doi.org/10.5958/0974-360x.2020.00086.4
27.    Ioannis Starakis; Achilleas Nikolakopoulos; Mazokopakis, E. E. Targeted Therapies for Advanced Non-Small Cell Lung Cancer. Combinatorial Chemistry and High Throughput Screening. 2012; 15(8): 641–655. https://doi.org/10.2174/138620712802650513.
28.    Ciardiello, F.; Hirsch, F. R.; Pirker, R.; Felip, E.; Valencia, C.; Smit, E. F. The Role of Anti-EGFR Therapies in EGFR-TKI-Resistant Advanced Non-Small Cell Lung Cancer. Cancer Treatment Reviews. 2024; 122: 102664. https://doi.org/10.1016/j.ctrv.2023.102664
29.    Sever, B.; Mehlika Dilek Altıntop; Radwan, M. O.; Ahmet Özdemir; Otsuka, M.; Fujita, M.; Ciftci, H. I. Design, Synthesis and Biological Evaluation of a New Series of Thiazolyl-Pyrazolines as Dual EGFR and HER2 Inhibitors. European Journal of Medicinal Chemistry. 2019; 182: 111648–111648. https://doi.org/10.1016/j.ejmech.2019.111648.
30.    Wahyuningsih, T. D., Suma, A. A. T., and Astuti, E. ;Synthesis, Anticancer Activity, and Docking Study of N-Acetyl Pyrazolines fromVeratraldehyde. Journal of Applied Pharmaceutical Science. 2019; 9 (3): 14–20. https://doi.org/10.7324/japs.2019.90303
31.    George, R. F.; Samir, E. M.; Abdelhamed, M. N.; Abdel-Aziz, H. A.; Safinaz E-S. Abbas. Synthesis and Anti-Proliferative Activity of Some New Quinoline Based 4,5-Dihydropyrazoles and Their Thiazole Hybrids as EGFR Inhibitors. Bioorganic Chemistry. 2019; 83: 186–197. https://doi.org/10.1016/j.bioorg.2018.10.038.
32.    Suma, A. A. T.; Wahyuningsih, T. D.; Mustofa, M. Synthesis, Cytotoxicity Evaluation and Molecular Docking Studyof N-Phenylpyrazoline Derivatives. Indonesian Journal of Chemistry. 2019; 19(4): 1081. https://doi.org/10.22146/ijc.45777.
33.    Akhtar, Md. J.; Khan, A. A.; Ali, Z.; Dewangan, R. P.; Rafi, Md.; Hassan, Md. Q.; Akhtar, Md. S.; Siddiqui, A. A.; Partap, S.; Pasha, S.; Yar, M. S. Synthesis of Stable Benzimidazole Derivatives Bearing Pyrazole as Anticancer and EGFR Receptor Inhibitors. Bioorganic Chemistry. 2018; 78: 158–169. https://doi.org/10.1016/j.bioorg.2018.03.002.
34.    Nawaz, F.; Alam, O.; Perwez, A.; Moshahid Alam Rizvi; Mohd. Javed Naim; Siddiqui, N.; Faheem Hyder Pottoo; Jha, M. 3′‐(4‐(Benzyloxy)Phenyl)‐1′‐Phenyl‐5‐(Heteroaryl/Aryl)‐3,4‐Dihydro‐1′ H, 2 H ‐[3,4′‐Bipyrazole]‐2‐Carboxamides as EGFR Kinase Inhibitors: Synthesis, Anticancer Evaluation, and Molecular Docking Studies. Archiv Der Pharmazie. 2020; 353(4): 1900262–1900262. https://doi.org/10.1002/ardp.201900262.
35.    Alkamaly, O. M.; Altwaijry, N.; Sabour, R.; Harras, M. F. Dual EGFR/VEGFR2 Inhibitors and Apoptosis Inducers: Synthesis and Antitumor Activity of Novel Pyrazoline Derivatives. Archiv der Pharmazie. 2020; 354(4): 2000351. https://doi.org/10.1002/ardp.202000351.
36.    Abdelsalam, E. A.; Abd El-Hafeez, A. A.; Eldehna, W. M.; El Hassab, M. A.; Marzouk, H. M. M.; Elaasser, M. M.; Abou Taleb, N. A.; Amin, K. M.; Abdel-Aziz, H. A.; Ghosh, P.; Hammad, S. F. Discovery of Novel Thiazolyl-Pyrazolines as Dual EGFR and VEGFR-2 Inhibitors Endowed with in Vitro Antitumor Activity towards Non-Small Lung Cancer. Journal of Enzyme Inhibition and Medicinal Chemistry. 2022; 37(1): 2265–2282. https://doi.org/10.1080/14756366.2022.2104841.
37.    Menier Al-Anazi; Melati Khairuddean; Al-Najjar, B. O.; Mohammad Murwih Alidmat; Kamal, M.; Muhamad, M. Synthesis, Anticancer Activity and Docking Studies of Pyrazoline and Pyrimidine Derivatives as Potential Epidermal Growth Factor Receptor (EGFR) Inhibitors. 2022; 15(7): 103864–103864. https://doi.org/10.1016/j.arabjc.2022.103864.
38.    Tarfah Al-Warhi; El, A. M.; Said, M. A.; Amgad Albohy; Elsayed, Z. M.; Aljaeed, N.; Elkaeed, E. B.; Eldehna, W. M.; Abdel-Aziz, H. A.; Abdelmoaz, M. A. Novel 2-(5-Aryl-4,5-Dihydropyrazol-1-Yl)Thiazol-4-One as EGFR Inhibitors: Synthesis, Biological Assessment and Molecular Docking Insights. Drug Design, Development and Therapy. 2022; 16: 1457–1471. https://doi.org/10.2147/dddt.s356988.
39.    Fakhry, M. M.; Mattar, A. A.; Marwa Alsulaimany; Al-Olayan, E. M.; Al-Rashood, S. T.; Abdel-Aziz, . New Thiazolyl-Pyrazoline Derivatives as Potential Dual EGFR/HER2 Inhibitors: Design, Synthesis, Anticancer Activity Evaluation and in Silico Study. Molecules (Basel. Online). 2023; 28(21): 7455–7455. https://doi.org/10.3390/molecules28217455.
40.    Mustofa; Pamungkas Bagus Satriyo; Tri, A.; Stephanus Satria Waskitha; Tutik Dwi Wahyuningsih; Eti Nurwening Sholikhah. A Potent EGFR Inhibitor, N-Phenyl Pyrazoline Derivative Suppresses Aggressiveness and Cancer Stem Cell-like Phenotype of Cervical Cancer Cells. 2022; 16: 2325–2339. https://doi.org/10.2147/dddt.s350913.
41.    Alkamaly, O. M.; Altwaijry, N.; Sabour, R.; Harras, M. F. Dual EGFR/VEGFR2 Inhibitors and Apoptosis Inducers: Synthesis and Antitumor Activity of Novel Pyrazoline Derivatives. Archiv der Pharmazie. 2020; 354(4): 2000351. https://doi.org/10.1002/ardp.202000351.
42.    Al-Wahaibi, L. H.; Abou-Zied, H. A.; Eman; Bahaa G. M. Youssif; Hayallah, A. M.; Abdel-Aziz, M. Design, Synthesis, Antiproliferative Actions, and DFT Studies of New Bis–Pyrazoline Derivatives as Dual EGFR/BRAFV600E Inhibitors. International Journal of Molecular Sciences. 2023; 24(10):  9104–9104. https://doi.org/10.3390/ijms24109104.
43.    Fakhry, M. M.; Mattar, A. A.; Marwa Alsulaimany; Al-Olayan, E. M.; Al-Rashood, S. T.; Abdel-Aziz, H. A. New Thiazolyl-Pyrazoline Derivatives as Potential Dual EGFR/HER2 Inhibitors: Design, Synthesis, Anticancer Activity Evaluation and in Silico Study. Molecules (Basel. Online). 2023; 28(21): 7455–7455. https://doi.org/10.3390/molecules28217455
44.    Nattava P.L. Docking Studies of Indole Assimilated Pyrazoline Molecular Hybrids: Design, Synthesis as Antiinflammatory Agents and Anticancer Agents. Journal of Advanced Scientific Research. 2023; 14(7): 22–31. https://doi.org/10.55218/jasr.202314704.
45.    Rana, M.; Hungharla Hungyo; Parashar, P.; Ahmad, S.; Rabiya Mehandi; Tandon, V.; Raza, K.; Assiri, M. A.; Ali, T. E.; El-Bahy, Z. M.; None Rahisuddin. Design, Synthesis, X-Ray Crystal Structures, Anticancer, DNA Binding, and Molecular Modelling Studies of Pyrazole–Pyrazoline Hybrid Derivatives. RSC Advances. 2023; 13(38): 26766–26779. https://doi.org/10.1039/d3ra04873j.
46.    Chunaifah, I., Venilita, R. E., Tjitda, P. J. P., Astuti, E., and Wahyuningsih, T. D. Thiophene-Based N-Phenyl Pyrazolines: Synthesis, Anticancer Activity, Molecular Docking and ADME Study. Journal of Applied Pharmaceutical Science.. 2024; 14(4): 63–71. https://doi.org/10.7324/japs.2024.146832

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available