Author(s):
Muh. Irham Bakhtiar, Nanang Munif Yasin, Lucia Rizka Andalusia, Ika Puspita Sari
Email(s):
nanangy@yahoo.com
DOI:
10.52711/0974-360X.2025.00733
Address:
Muh. Irham Bakhtiar1,2, Nanang Munif Yasin3*, Lucia Rizka Andalusia4, Ika Puspita Sari5
1Doctoral Program in Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia.
2Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Indonesia.
3,5Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia.
4Directorate General of Pharmacy and Medical Devices, Ministry of Health of the Republic of Indonesia.
*Corresponding Author
Published In:
Volume - 18,
Issue - 10,
Year - 2025
ABSTRACT:
Identifying drug-related problems (DRPs) and providing recommendations to clinicians for sepsis patients involves various forms of pharmacist oversight aimed at preventing improper treatment and enhancing patient outcomes. The creation of a pharmacist clinical decision support system (CDSS) to identify DRPs in sepsis patients is expected to enhance the pharmaceutical care services provided by pharmacists, enabling effective and prompt intervention within multidisciplinary teams in hospitals, particularly in intensive care units where patients are critically ill and require fast, precise, and optimal services. Method: This study employs a literature review, also known as descriptive analysis, based on existing research data. Results: The findings indicate that the use of CDSS by pharmacists, particularly for sepsis patients, has been shown to improve the role of pharmacists and enhance clinical outcomes for patients. Conclusion: Based on the results and discussions presented, it can be concluded that CDSS is very effective for identifying drug-related problems (DRPs) more quickly and accurately. However, there remain limitations in previous research regarding the comprehensive development of a medication monitoring system by pharmacists based on Clinical Decision Support Systems (CDSS) for sepsis therapy.
Cite this article:
Muh. Irham Bakhtiar, Nanang Munif Yasin, Lucia Rizka Andalusia, Ika Puspita Sari. The Role of Pharmacists with Clinical Decision Support Systems in the Drug Related Problems (DRPs) Aspect of Sepsis Patients in the ICU: A Review. Research Journal of Pharmacy and Technology. 2025;18(10):5071-0. doi: 10.52711/0974-360X.2025.00733
Cite(Electronic):
Muh. Irham Bakhtiar, Nanang Munif Yasin, Lucia Rizka Andalusia, Ika Puspita Sari. The Role of Pharmacists with Clinical Decision Support Systems in the Drug Related Problems (DRPs) Aspect of Sepsis Patients in the ICU: A Review. Research Journal of Pharmacy and Technology. 2025;18(10):5071-0. doi: 10.52711/0974-360X.2025.00733 Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-10-72
REFERENCES:
1. Hotchkiss RS, Karl IE. The Pathophysiology and Treatment of Sepsis. N Engl J Med. 2003; 348(2): 138–150; doi: 10.1056/NEJMra021333.
2. Martin GS, Mannino DM, Eaton S, et al. The Epidemiology of Sepsis in the United States from 1979 through 2000. N Engl J Med. 2003; 348(16): 1546–1554; doi: 10.1056/NEJMoa022139.
3. Fleischmann C, Scherag A, Adhikari NKJ, et al. Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. Am J Respir Crit Care Med. 2016; 193(3): 259–272; doi: 10.1164/rccm.201504-0781OC.
4. Fleischmann-Struzek C, Mellhammar L, Rose N, et al. Incidence and mortality of hospital- and ICU-treated sepsis: results from an updated and expanded systematic review and meta-analysis. Intensive Care Med. 2020; 46(8): 1552–1562; doi: 10.1007/s00134-020-06151-x.
5. Rhee C, Dantes R, Epstein L, et al. Incidence and Trends of Sepsis in US Hospitals Using Clinical vs Claims Data, 2009-2014. JAMA. 2017;318(13):1241; doi: 10.1001/jama.2017.13836.
6. Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021; 47(11): 1181–1247; doi: 10.1007/s00134-021-06506-y.
7. Wildhagen F V., Neininger MP, Hensen J, et al. An Observational Study to Identify Drug-related Problems (DRP) in Routine Care and An Expert Panel Assessment to Rate Clinical Risk and Preventability by Unit-dose Dispensing Systems (UDDS) with Computerized Physician Order Entry (CPOE) and Clinical Decis. Pharmazie. 2023; 78: 134–140; doi: 10.1691/ph.2023.3557.
8. PCNE. PCNE Classification for Drug Related Problems V9.1. 2020.
9. Shareef J, Rao PG, Ayman Al-Bonni IM, et al. Assessment of Drug related problems Encountered in Patients with Psychiatric disorders in a Secondary Care Hospital. Res J Pharm Technol. 2021; 6089–6094; doi: 10.52711/0974-360X.2021.01058.
10. Devi A, Sembian N, Kaur S. Occurrence of Medication Errors and Oral Medication Administration Practices of Staff Nurses. Res J Pharm Technol. 2016; 9(8): 1145; doi: 10.5958/0974-360X.2016.00218.3.
11. Shah N V., Patil SA, Shah V V., et al. Advances in Hospital Pharmacy. Res J Pharm Technol. 2017; 10(2): 618; doi: 10.5958/0974-360X.2017.00120.2.
12. Khairnar A, Gade PR. Interventional Improvement in Hospital Based Intensive Monitoring of Adverse Event. Res J Pharm Technol. 2011; 4(9).
13. Abubakar AR, Simbak N Bin, Haque M. Adverse Drug Reactions: Predisposing Factors, Modern Classifications and Causality Assessment. Res J Pharm Technol. 2014; 7(9): 1091–1098.
14. Rayees NM, Kumar S, Raj KCB, et al. A Prospective Observational Study on Adverse Drug Reactions in General Medicine Department of a Tertiary Care Teaching Hospital. Res J Pharm Technol. 2019; 12(5): 2289; doi: 10.5958/0974-360X.2019.00382.2.
15. Umar BU, Haque M. Adverse Drug Reactions in Bangladeshi Health Care Setup: An Update. Res J Pharm Technol. 2015; 8(11): 1598; doi: 10.5958/0974-360X.2015.00287.5.
16. Pribadi P, Kristina SA, Syahlani SP, et al. The empirical test of pharmacist-patient relationship model in hospital pharmacy practice: Indonesia context. Res J Pharm Technol. 2019; 12(10): 4623; doi: 10.5958/0974-360X.2019.00795.9.
17. Tharanon V, Putthipokin K, Sakthong P. Drug-related problems identified during pharmaceutical care interventions in an intensive care unit at a tertiary university hospital. SAGE open Med 2022; 10: 20503121221090880; doi: 10.1177/20503121221090881.
18. Spandana A, Ranjith AS, Vani T, et al. Assessment and Evaluation of Drug-Drug Interactions in an Intensive Care unit of a Tertiary Care Hospital and Clinical Pharmacist’s Intervention Strategies. Res J Pharm Technol. 2019; 12(8): 3613; doi: 10.5958/0974-360X.2019.00616.4.
19. Chiang L, Huang Y, Tsai T. Clinical pharmacy interventions in intensive care unit patients. J Clin Pharm Ther. 2021; 46(1): 128–133; doi: 10.1111/jcpt.13265.
20. Camire E, Moyen E, Stelfox HT. Medication errors in critical care: risk factors, prevention and disclosure. Can Med Assoc J 2009; 180(9): 936–943; doi: 10.1503/cmaj.080869.
21. Strand LM, Morley PC, Cipolle RJ, et al. Drug-Related Problems: Their Structure and Function. DICP 1990; 24(11): 1093–1097; doi: 10.1177/106002809002401114.
22. Hepler CD, Strand LM. Opportunities and responsibilities in pharmaceutical care. Am J Hosp Pharm 1990; 47(3): 533–43.
23. ASHP. ASHP guidelines on a standardized method for pharmaceutical care. Am J Heal Pharm. 1996; 53(14): 1713–1716; doi: 10.1093/ajhp/53.14.1713.
24. Meyboom RH, Lindquist M, Egberts AC. An ABC of Drug-Related Problems. Drug Saf. 2000; 22(6): 415–423; doi: 10.2165/00002018-200022060-00001.
25. van Mil JF, Westerlund LT, Hersberger KE, et al. Drug-Related Problem Classification Systems. Ann Pharmacother 2004;38(5):859–867; doi: 10.1345/aph.1D182.
26. Azeez S, Panakkal LM, Meenpidiyil SS, et al. Impact of Clinical Pharmacist Intervention in promoting Rational Antibiotic use in Pediatric patients. Res J Pharm Technol. 2020; 13(11): 5077–5082; doi: 10.5958/0974-360X.2020.00889.6.
27. Garin N, Sole N, Lucas B, et al. Drug related problems in clinical practice: a cross-sectional study on their prevalence, risk factors and associated pharmaceutical interventions. Sci Rep. 2021; 11(1): 883; doi: 10.1038/s41598-020-80560-2.
28. Albayrak A, Başgut B, Bıkmaz GA, et al. Clinical pharmacist assessment of drug-related problems among intensive care unit patients in a Turkish university hospital. BMC Health Serv Res. 2022; 22(1): 79; doi: 10.1186/s12913-022-07494-5.
29. Siddiqua A, Abdullah RK, Kareem NA. Impact of Clinical Pharmacist Intervention towards Polypharmacy in Elderly population-A Systematic Study. Res J Pharm Technol. 2019; 12(6): 2621; doi: 10.5958/0974-360X.2019.00439.6.
30. Jauza J, Thesa Ghozali M. Professional competence and Perception on the Practical Implementation of Telepharmacy among Pharmacists – A Review. Res J Pharm Technol. 2024; 2915–2924; doi: 10.52711/0974-360X.2024.00457.
31. Budi S, Ikawati Z, Dwiprahasto D, et al. Evaluasi Drug Related Problems (DRPs) Antibiotik pada Pasien Sepsis di Rumah Sakit di Yogyakarta. J Ilmu Kefarmasian Indones. 2017; 15(1): 43–49.
32. Kelm DJ, Perrin JT, Cartin-Ceba R, et al. Fluid Overload in Patients With Severe Sepsis and Septic Shock Treated With Early Goal-Directed Therapy Is Associated With Increased Acute Need for Fluid-Related Medical Interventions and Hospital Death. Shock. 2015; 43(1): 68–73; doi: 10.1097/SHK.0000000000000268.
33. Galli TB, Reis WC, Andrzejevski VM. Potentially inappropriate prescribing and the risk of adverse drug reactions in critically ill older adults. Pharm Pract (Granada). 2016; 14(4): 818; doi: 10.18549/PharmPract.2016.04.818.
34. Caribé RA, Chaves GR, Pocognoni JD, et al. Potenciales interacciones medicamentosas en pacientes con sepsis internados en la unidad de terapia intensiva. Farm Hosp. 2013; 37: 383–387.
35. Andersson M, Östholm-Balkhed Å, Fredrikson M, et al. Delay of appropriate antibiotic treatment is associated with high mortality in patients with community-onset sepsis in a Swedish setting. Eur J Clin Microbiol Infect Dis. 2019; 38(7): 1223–1234; doi: 10.1007/s10096-019-03529-8.
36. Stollings JL, Bloom SL, Wang L, et al. Critical Care Pharmacists and Medication Management in an ICU Recovery Center. Ann Pharmacother. 2018; 52(8): 713–723; doi: 10.1177/1060028018759343.
37. Yasrebi-de Kom IAR, Dongelmans DA, Abu-Hanna A, et al. Acute kidney injury associated with nephrotoxic drugs in critically ill patients: a multicenter cohort study using electronic health record data. Clin Kidney J. 2023; 16(12): 2549–2558; doi: 10.1093/ckj/sfad160.
38. Li X, Zheng S, Gu J, et al. Drug-Related Problems Identified During Pharmacy Intervention and Consultation: Implementation of an Intensive Care Unit Pharmaceutical Care Model. Front Pharmacol. 2020; 11; doi: 10.3389/fphar.2020.571906.
39. Bekele F, Fekadu G, Bekele K, et al. Drug-related problems among patients with infectious disease admitted to medical wards of Wollega University Referral Hospital: Prospective observational study. SAGE Open Med. 2021; 9: 205031212198962; doi: 10.1177/2050312121989625.
40. Howle LM, Kirkpatrick CMJ, Trethewy CE. Clinical pharmacy in a regional Australian intensive care unit. J Pharm Pract Res. 2018; 48(1): 36–43; doi: 10.1002/jppr.1331.
41. Weant KA, Armitstead JA, Ladha AM, et al. Cost Effectiveness of a Clinical Pharmacist on a Neurosurgical Team. Neurosurgery. 2009; 65(5): 946–951; doi: 10.1227/01.NEU.0000347090.22818.35.
42. Leape LL. Pharmacist Participation on Physician Rounds and Adverse Drug Events in the Intensive Care Unit. JAMA. 1999; 282(3): 267; doi: 10.1001/jama.282.3.267.
43. Wang T, Benedict N, Olsen KM, et al. Effect of critical care pharmacist’s intervention on medication errors: A systematic review and meta-analysis of observational studies. J Crit Care. 2015; 30(5): 1101–1106; doi: 10.1016/j.jcrc.2015.06.018.
44. Lee H, Ryu K, Sohn Y, et al. Impact on Patient Outcomes of Pharmacist Participation in Multidisciplinary Critical Care Teams: A Systematic Review and Meta-Analysis. Crit Care Med. 2019; 47(9): 1243–1250; doi: 10.1097/CCM.0000000000003830.
45. Ng TM, Bell AM, Hong C, et al. Pharmacist Monitoring of QTc Interval–Prolonging Medications in Critically Ill Medical Patients: A Pilot Study. Ann Pharmacother. 2008; 42(4): 475–482; doi: 10.1345/aph.1K458.
46. Rivkin A, Yin H. Evaluation of the role of the critical care pharmacist in identifying and avoiding or minimizing significant drug-drug interactions in medical intensive care patients. J Crit Care. 2011; 26(1): 104.e1-104.e6; doi: 10.1016/j.jcrc.2010.04.014.
47. MacLaren R, Bond CA, Martin SJ, et al. Clinical and economic outcomes of involving pharmacists in the direct care of critically ill patients with infections. Crit Care Med. 2008; 36(12): 3184–3189. doi: 10.1097/CCM.0b013e31818f2269.
48. Marshall J, Finn CA, Theodore AC. Impact of a clinical pharmacist-enforced intensive care unit sedation protocol on duration of mechanical ventilation and hospital stay. Crit Care Med. 2008; 36(2): 427–433; doi: 10.1097/01.CCM.0000300275.63811.B3.
49. Louzon P, Jennings H, Ali M, et al. Impact of pharmacist management of pain, agitation, and delirium in the intensive care unit through participation in multidisciplinary bundle rounds. Am J Heal Pharm. 2017; 74(4): 253–262; doi: 10.2146/ajhp150942.
50. Leguelinel-Blache G, Nguyen T-L, Louart B, et al. Impact of Quality Bundle Enforcement by a Critical Care Pharmacist on Patient Outcome and Costs. Crit Care Med. 2018; 46(2): 199–207; doi: 10.1097/CCM.0000000000002827.
51. Beardsley JR, Jones CM, Williamson J, et al. Pharmacist involvement in a multidisciplinary initiative to reduce sepsis-related mortality. Am J Heal Pharm 2016; 73(3): 143–149; doi: 10.2146/ajhp150186.
52. MacLaren R, Plamondon JM, Ramsay KB, et al. A Prospective Evaluation of Empiric versus Protocol‐Based Sedation and Analgesia. Pharmacother J Hum Pharmacol Drug Ther. 2000; 20(6): 662–672. doi: 10.1592/phco.20.7.662.35172.
53. Buckley MS, Knutson KD, Agarwal SK, et al. Clinical Pharmacist–Led Impact on Inappropriate Albumin Use and Costs in the Critically Ill. Ann Pharmacother. 2020; 54(2): 105–112; doi: 10.1177/1060028019877471.
54. Bassford C. Decisions regarding admission to the ICU and international initiatives to improve the decision-making process. Crit Care. 2017; 21(1): 174; doi: 10.1186/s13054-017-1749-3.
55. Marshall JC, Bosco L, Adhikari NK, et al. What is an intensive care unit? A report of the task force of the World Federation of Societies of Intensive and Critical Care Medicine. J Crit Care. 2017; 37: 270–276; doi: 10.1016/j.jcrc.2016.07.015.
56. Reader TW, Reddy G, Brett SJ. Impossible decision? An investigation of risk trade-offs in the intensive care unit. Ergonomics. 2018; 61(1): 122–133; doi: 10.1080/00140139.2017.1301573.
57. Diaz J V., Riviello ED, Papali A, et al. Global Critical Care: Moving Forward in Resource-Limited Settings. Ann Glob Heal. 2019; 85(1); doi: 10.5334/aogh.2413.
58. Mercadante S, Gregoretti C, Cortegiani A. Palliative care in intensive care units: why, where, what, who, when, how. BMC Anesthesiol. 2018;18(1):106; doi: 10.1186/s12871-018-0574-9.
59. SCCM. Meet the Critical Care Team. 2024.
60. Lat I, Paciullo C, Daley MJ, et al. Position Paper on Critical Care Pharmacy Services: 2020 Update. Crit Care Med. 2020; 48(9): e813–e834; doi: 10.1097/CCM.0000000000004437.
61. Bissell BD, Gilbert BW. Critical Care Pharmacotherapy. In: Pharmacotherapy Principles & Practice. (Chisholm-Burns MA, Schwinghammer TL, Patrick M. Malone, et al. eds) McGraw Hill: United States; 2022; pp. 39–48.
62. Berner ES, Lande TJ La. Overview of Clinical Decision Support Systems. Theory and Practice. In: Clinical Decision Support Systems. (Berner ES. ed) Springer: NewYork; 2007; pp. 3–22; doi: https://doi.org/10.1007/978-0-387-38319-4_1.
63. Moja L, Kwag KH, Lytras T, et al. Effectiveness of Computerized Decision Support Systems Linked to Electronic Health Records: A Systematic Review and Meta-Analysis. Am J Public Health. 2014; 104(12): e12–e22; doi: 10.2105/AJPH.2014.302164.
64. Bright TJ, Wong A, Dhurjati R, et al. Effect of Clinical Decision-Support Systems. Ann Intern Med. 2012; 157(1): 29; doi: 10.7326/0003-4819-157-1-201207030-00450.
65. Bates DW, O’Neil AC, Boyle D, et al. Potential Identifiability and Preventability of Adverse Events Using Information Systems. J Am Med Informatics Assoc. 1994; 1(5): 404–411; doi: 10.1136/jamia.1994.95153428.
66. Rommers MK, Teepe-Twiss IM, Guchelaar H-J. A Computerized Adverse Drug Event Alerting System Using Clinical Rules. Drug Saf. 2011; 34(3): 233–242; doi: 10.2165/11536500-000000000-00000.
67. Sakuma M, Bates DW, Morimoto T. Clinical prediction rule to identify high‐risk inpatients for adverse drug events: the JADE Study. Pharmacoepidemiol Drug Saf. 2012; 21(11): 1221–1226; doi: 10.1002/pds.3331.
68. Taegtmeyer AB, Kullak-Ublick GA, Widmer N, et al. Clinical Usefulness of Electronic Drug-Drug Interaction Checking in the Care of Cardiovascular Surgery Inpatients. Cardiology. 2012; 123(4): 219–222; doi: 10.1159/000343272.
69. Perwirani R, Puspitasari I. Perancangan Clinical Decision Support System (CDSS) untuk Drug Drug Interaction (DDI) pada e-Prescription. J Manaj DAN PELAYANAN Farm (Journal Manag Pharm Pract. 2023; 12(4): 198; doi: 10.22146/jmpf.74506.
70. Thanh Hai N, Thi Thuy Van P, Cong Thanh L, et al. Effect of Clinical Decision Support System and Clinical Pharmacists’ Practice in Preventing Drug-drug Interactions among Inpatients in Bac Ninh General Hospital. VNU J Sci Med Pharm Sci. 2023;39(2); doi: 10.25073/2588-1132/vnumps.4503.
71. Wong A, Rehr C, Seger DL, et al. Evaluation of Harm Associated with High Dose-Range Clinical Decision Support Overrides in the Intensive Care Unit. Drug Saf 2019; 42(4): 573–579; doi: 10.1007/s40264-018-0756-x.
72. Evans RS, Pestotnik SL, Classen DC, et al. Evaluation of a Computer-Assisted Antibiotic-Dose Monitor. Ann Pharmacother. 1999; 33(10): 1026–1031; doi: 10.1345/aph.18391.
73. Gulliford MC, Prevost AT, Charlton J, et al. Effectiveness and safety of electronically delivered prescribing feedback and decision support on antibiotic use for respiratory illness in primary care: REDUCE cluster randomised trial. BMJ 2019; l236; doi: 10.1136/bmj.l236.
74. Gonzales R, Anderer T, McCulloch CE, et al. A Cluster Randomized Trial of Decision Support Strategies for Reducing Antibiotic Use in Acute Bronchitis. JAMA Intern Med. 2013; 173(4): 267; doi: 10.1001/jamainternmed.2013.1589.
75. Calloway S, Akilo HA, Bierman K. Impact of a Clinical Decision Support System on Pharmacy Clinical Interventions, Documentation Efforts, and Costs. Hosp Pharm. 2013; 48(9): 744–752. doi: 10.1310/hpj4809-744.
76. Buising KL, Thursky KA, Black JF, et al. Improving antibiotic prescribing for adults with community acquired pneumonia: Does a computerised decision support system achieve more than academic detailing alone? – a time series analysis. BMC Med Inform Decis Mak. 2008; 8(1): 35; doi: 10.1186/1472-6947-8-35.
77. Evans RS, Pestotnik SL, Classen DC, et al. A Computer-Assisted Management Program for Antibiotics and Other Antiinfective Agents. N Engl J Med. 1998; 338(4): 232–238; doi: 10.1056/NEJM199801223380406.
78. Puskarich MA, Trzeciak S, Shapiro NI, et al. Association between timing of antibiotic administration and mortality from septic shock in patients treated with a quantitative resuscitation protocol*. Crit Care Med 2011; 39(9): 2066–2071; doi: 10.1097/CCM.0b013e31821e87ab.
79. Chertow GM. Guided Medication Dosing for Inpatients With Renal Insufficiency. JAMA. 2001; 286(22): 2839; doi: 10.1001/jama.286.22.2839.
80. Terrell KM, Perkins AJ, Hui SL, et al. Computerized Decision Support for Medication Dosing in Renal Insufficiency: A Randomized, Controlled Trial. Ann Emerg Med. 2010; 56(6): 623-629. e2; doi: 10.1016/j.annemergmed.2010.03.025.
81. Such Díaz A, Saez de la Fuente J, Esteva L, et al. Drug prescribing in patients with renal impairment optimized by a computer-based, semi-automated system. Int J Clin Pharm. 2013; 35(6): 1170–1177; doi: 10.1007/s11096-013-9843-3.
82. Sard BE, Walsh KE, Doros G, et al. Retrospective Evaluation of a Computerized Physician Order Entry Adaptation to Prevent Prescribing Errors in a Pediatric Emergency Department. Pediatrics. 2008; 122(4): 782–787. doi: 10.1542/peds.2007-3064.
83. Hashemi F, van Gelder TG, Bollen CW, et al. The effect of a decision support system on the incidence of prescription errors in a PICU. J Clin Pharm Ther. 2022; 47(3): 330–344. doi: 10.1111/jcpt.13562.
84. Irnayanti, Andayani TM, Rahmawati F. Evaluasi Pharmacy Support System Dalam Identifikasi Drug Related Problems Pada Pasien Pediatrik Rawat Jalan. J Manaj dan Pelayanan Farm. 2016; 6(2): 95–100.
85. Longhurst CA, Parast L, Sandborg CI, et al. Decrease in Hospital-wide Mortality Rate After Implementation of a Commercially Sold Computerized Physician Order Entry System. Pediatrics. 2010; 126(1): 14–21. doi: 10.1542/peds.2009-3271.
86. O’Sullivan D, O’Mahony D, O’Connor MN, et al. The Impact of a Structured Pharmacist Intervention on the Appropriateness of Prescribing in Older Hospitalized Patients. Drugs Aging. 2014; 31(6): 471–481. doi: 10.1007/s40266-014-0172-6.
87. Tamblyn R, Huang A, Perreault R, et al. The medical office of the 21st century (MOXXI): effectiveness of computerized decision-making support in reducing inappropriate prescribing in primary care. CMAJ. 2003; 169(6): 549–56.
88. Griffey RT, Lo HG, Burdick E, et al. Guided medication dosing for elderly emergency patients using real-time, computerized decision support. J Am Med Informatics Assoc. 2012; 19(1): 86–93; doi: 10.1136/amiajnl-2011-000124.
89. Dwiningrum A, Andayani TM, Rahmawati F. Evaluasi Pharmacy Support System Dalam Identifikasi Drug Related Problems Pada Pasien Geriatrik Rawat Jalan. J Manaj dan Pelayanan Farm 2016; 6(1): 13–18; doi: https://doi.org/10.22146/jmpf.233.
90. Terrell KM, Perkins AJ, Dexter PR, et al. Computerized Decision Support to Reduce Potentially Inappropriate Prescribing to Older Emergency Department Patients: A Randomized, Controlled Trial. J Am Geriatr Soc. 2009; 57(8): 1388–1394; doi: 10.1111/j.1532-5415.2009.02352.x.
91. Wien K, Thern J, Neubert A, et al. Reduced prevalence of drug-related problems in psychiatric inpatients after implementation of a pharmacist-supported computerized physician order entry system - a retrospective cohort study. Front Psychiatry. 2024; 15; doi: 10.3389/fpsyt.2024.1304844.
92. Shulman R, Singer M, Goldstone J, et al. Medication errors: a prospective cohort study of hand-written and computerised physician order entry in the intensive care unit. Crit Care. 2005; 9(5): R516-21; doi: 10.1186/cc3793.
93. DeYoung JL, VanderKooi ME, Barletta JF. Effect of bar-code-assisted medication administration on medication error rates in an adult medical intensive care unit. Am J Heal Pharm. 2009; 66(12): 1110–1115; doi: 10.2146/ajhp080355.
94. Chapuis C, Roustit M, Bal G, et al. Automated drug dispensing system reduces medication errors in an intensive care setting. Crit Care Med 2010; 38(12): 2275–2281; doi: 10.1097/CCM.0b013e3181f8569b.
95. Blanc A-L, Guignard B, Desnoyer A, et al. Prevention of potentially inappropriate medication in internal medicine patients: A prospective study using the electronic application PIM-Check. J Clin Pharm Ther. 2018; 43(6): 860–866. doi: 10.1111/jcpt.12733.
96. Potier A, Dufay E, Dony A, et al. Pharmaceutical algorithms set in a real time clinical decision support targeting high-alert medications applied to pharmaceutical analysis. Int J Med Inform. 2022; 160: 104708; doi: 10.1016/j.ijmedinf.2022.104708.
97. Ferrández O, Urbina O, Grau S, et al. Computerized pharmacy surveillance and alert system for drug-related problems. J Clin Pharm Ther. 2017; 42(2): 201–208. doi: 10.1111/jcpt.12495.
98. Mestres Gonzalvo C, de Wit HAJM, van Oijen BPC, et al. Supporting clinical rules engine in the adjustment of medication (SCREAM): protocol of a multicentre, prospective, randomised study. BMC Geriatr. 2017; 17(1): 35. doi: 10.1186/s12877-017-0426-3.
99. Judge J, Field TS, DeFlorio M, et al. Prescribers’ Responses to Alerts During Medication Ordering in the Long Term Care Setting. J Am Med Informatics Assoc. 2006; 13(4): 385–390; doi: 10.1197/jamia.M1945.
100. Al-Dorzi HM, Tamim HM, Cherfan A, et al. Impact of computerized physician order entry (CPOE) system on the outcome of critically ill adult patients: a before-after study. BMC Med Inform Decis Mak. 2011; 11(1): 71. doi: 10.1186/1472-6947-11-71.
101. Pérez ERF, Winters JL, Gajic O. The addition of decision support into computerized physician order entry reduces red blood cell transfusion resource utilization in the intensive care unit. Am J Hematol. 2007; 82(7): 631–633. doi: 10.1002/ajh.20888.