Author(s): Patil Nirupam, Kakadiya Jagdish

Email(s): nirupam3192@gmail.com

DOI: 10.52711/0974-360X.2025.00732   

Address: Patil Nirupam1, Kakadiya Jagdish2
1Assistant professor, Department of Pharmacology, Parul Institute of Pharmacy and Research, Parul University, Vadodara, Gujarat India.
2Professor, Department of Pharmacology, Parul Institute of Pharmacy and Research, Parul University,Vadodara, Gujarat India.
*Corresponding Author

Published In:   Volume - 18,      Issue - 10,     Year - 2025


ABSTRACT:
A vital protein kinase, known as the mitogen-activated protein kinases (MAPKs), they be instrumental for controlling cellular tasks ranging from dividing, growing, and staying alive. This review gives a brief idea at the pathogenic involvement of MAPK signaling pathways in many human ailments. Dysregulated ERK1/2 activity in polycystic ovarian syndrome (PCOS) accelerates disease development by influencing gene transcription and cell proliferation. Tumor development and metastasis are encouraged by prolonged MEK-ERK signaling gives rise to mutations in Ras and B-Raf within the ERK pathway in cancer. Function of ERK in tumor survival is highlighted by its phosphorylation of proteins including MCL-1 and BIM; sorafenib, a Raf inhibitor, has therapeutic promise. For glucose triggered insulin release and gene transcription in pancreatic promote beta cells, ERK1/2 activation is essential in diabetes mellitus. Beta cell death is encouraged and insulin gene transcription is hampered by chronic hyperglycemia's disruption of ERK1/2 signaling.


Cite this article:
Patil Nirupam, Kakadiya Jagdish. Targeting MAPK Pathways: Novel Therapeutic Approaches for Human Disease. Research Journal of Pharmacy and Technology. 2025;18(10):5066-0. doi: 10.52711/0974-360X.2025.00732

Cite(Electronic):
Patil Nirupam, Kakadiya Jagdish. Targeting MAPK Pathways: Novel Therapeutic Approaches for Human Disease. Research Journal of Pharmacy and Technology. 2025;18(10):5066-0. doi: 10.52711/0974-360X.2025.00732   Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-10-71


REFERENCES:
1.    McCubrey JA, LaHair MM, Franklin RA. Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxidants and Redox Signaling. 2006; 8(9-10): 1775-89. http:doi:10.1089/ars.2006.8.1775.
2.    Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007; 26(22): 3279-90. 10.1038/sj.onc.1210421
3.    Lewis TS, Shapiro PS, Ahn NG. Signal transduction through MAP kinase cascades. Advances in Cancer Research. 1998; 74: 49-139. 10.1016/s0065-230x(08)60765-4
4.    Yoon S, Seger R. The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors. 2006; 24(1): 21-44. 10.1080/02699050500284218
5.    Morrison DK, Davis RJ. Regulation of MAP kinase signaling modules by scaffold proteins in mammals. Annual Review of Cell and Developmental Biology. 2003; 19(1): 91-118. 10.1146/annurev.cellbio.19.111401.091942
6.    Whitmarsh AJ. The Jip family of MAPK scaffold proteins. Biochemical Society Transactions. 34(5): 828–32. http:doi:10.1042/bst0340828
7.    Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell. 2000; 103(2): 239-52. http:doi:10.1016/s0092-8674(00)00116-1
8.    Malumbres M, Barbacid M. Ras.Oncogenes: The first 30 years. Nat. Rev. Can. 2003; 3(6): 459–65. http:doi:10.1038/nrc1097.
9.    Uhlik MT, Abell AN, Cuevas BD, Nakamura K, Johnson GL. Wiring diagrams of MAPK regulation by MEKK1, 2, and 3. Biochemistry and Cell Biology. 2004; 82(6): 658-63.http:doi:10.1139/o04-114
10.    Cuevas BD, Winter-Vann AM, Johnson NL, Johnson GL. MEKK1 controls matrix degradation and tumor cell dissemination during metastasis of polyoma middle-T driven mammary cancer. Oncogene. 2006; 25(36): 4998-5010. http:doi:10.1038/ sj.onc.1209507 
11.    Nagai H, Noguchi T, Takeda K, Ichijo H. Pathophysiological roles of ASK1-MAP kinase signaling pathways. BMB Reports. 2007; 40(1): 1-6.http:doi:10.5483/bmbrep.2007.40.1.001
12.    Pearson GW, Cobb MH. Cell condition-dependent regulation of ERK5 by cAMP. Journal of Biological Chemistry. 2002; 277(50): 48094-8. http:doi:10.1074/jbc.m208535200.
13.    Pearson GW, Earnest S, Cobb MH. Cyclic AMP selectively uncouples mitogen-activated protein kinase cascades from activating signals. Molecular and Cellular Biology. 2006; 26(8): 3039-47. http:doi:10.1128/mcb.26.8.3039-3047.2006.
14.    Xie L, Law BK, Chytil AM, Brown KA, Aakre ME, Moses HL. Activation of the Erk pathway is required for TGF-β1-induced EMT in vitro. Neoplasia. 2004; 6(5): 603-10. http:doi:10.1593/neo.04241.
15.    Ross KR, Corey DA, Dunn JM, Kelley TJ. SMAD3 expression is regulated by mitogen-activated protein kinase kinase-1 in epithelial and smooth muscle cells. Cellular Signalling. 2007; 19(5): 923-31. http:doi:10.1016/j.cellsig.2006.11.008.
16.    Yamaguchi T, Wallace DP, Magenheimer BS, Hempson SJ, Grantham JJ, Calvet JP. Calcium restriction allows cAMP activation of the B-Raf/ERK pathway, switching cells to a cAMP-dependent growth-stimulated phenotype. Journal of Biological Chemistry. 2004; 279(39): 40419-30. http:doi:10.1074/ jbc.m405079200.
17.    Omori S, Hida M, Fujita H, Takahashi H, Tanimura S, Kohno M, Awazu M. Extracellular signal–regulated kinase inhibition slows disease progression in mice with polycystic kidney disease. Journal of the American Society of Nephrology. 2006; 17(6): 1604-14. http:doi:10.1681/asn.2004090800.
18.    Schneider L, Clement CA, Teilmann SC, Pazour GJ, Hoffmann EK, Satir P, Christensen ST. PDGFRαα signaling is regulated through the primary cilium in fibroblasts. Current Biology. 2005; 15(20): 1861-6. http:doi:10.1016/j.cub.2005.09.012.
19.    Inglis PN, Boroevich KA, Leroux MR. Piecing together a ciliome. TRENDS in Genetics. 2006; 22(9): 491-500. http:doi:10.1016/j.tig.2006.07.006 
20.    Yamaguchi T, Nagao S, Wallace DP, Belibi FA, Cowley Jr BD, Pelling JC, Grantham JJ. Cyclic AMP activates B-Raf and ERK in cyst epithelial cells from autosomal-dominant polycystic kidneys. Kidney International. 2003; 63(6): 1983-94. http:doi:10.1046/j.1523-1755.2003.00023.x
21.    Boutros T, Chevet E, Metrakos P. Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer. Pharmacological Reviews. 2008; 60(3): 261-310. http:doi:10.1124/pr.107.00106.
22.    Schubbert S, Shannon K, Bollag G. Hyperactive Ras in developmental disorders and cancer. Nature Reviews Cancer. 2007; 7(4): 295-308. http:doi:10.1038/nrc2109.
23.    Haigis KM, Kendall KR, Wang Y, Cheung A, Haigis MC, Glickman JN, Niwa-Kawakita M, Sweet-Cordero A, Sebolt-Leopold J, Shannon KM, Settleman J. Differential effects of oncogenic K-Ras and N-Ras on proliferation, differentiation and tumor progression in the colon. Nature Genetics. 2008; 40(5): 600-8. http:doi:10.1038/ng.115.
24.    Calcagno SR, Li S, Colon M, Kreinest PA, Thompson EA, Fields AP, Murray NR. Oncogenic K‐ras promotes early carcinogenesis in the mouse proximal colon. International Journal of Cancer. 2008; 122(11): 2462-70.http:doi:10.1002/ijc.23383.
25.    Voisin L, Julien C, Duhamel S, Gopalbhai K, Claveau I, Saba-El-Leil MK, Rodrigue-Gervais IG, Gaboury L, Lamarre D, Basik M, Meloche S. Activation of MEK1 or MEK2 isoform is sufficient to fully transform intestinal epithelial cells and induce the formation of metastatic tumors. BMC Cancer. 2008; 8: 1-7. http:doi:10.1186/1471-2407-8-337.
26.    Halilovic E, Solit DB. Therapeutic strategies for inhibiting oncogenic BRAF signaling. Current opinion in pharmacology. 2008; 8(4): 419-26. http:doi:10.1016/j.coph.2008.06.014.
27.    Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM, Jones CM, Marshall CJ, Springer CJ, Barford D, Marais R. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell. 2004; 116(6): 855-67. http:doi:10.1016/s0092-8674(04)00215-6. 
28.    Rushworth LK, Hindley AD, O'Neill E, Kolch W. Regulation and role of Raf-1/B-Raf heterodimerization. Molecular and Cellular Biology. 2006. http:doi:10.1128/mcb.26.6.2262-2272.2006. 
29.    Zebisch A, Staber PB, Delavar A, Bodner C, Hiden K, Fischereder K, Janakiraman M, Linkesch W, Auner HW, Emberger W, Windpassinger C. Two transforming C-RAF germ-line mutations identified in patients with therapy-related acute myeloid leukemia. Cancer Research. 2006; 66(7): 3401-8. http:doi:10.1158/0008-5472.can-05-0115
30.    Huang C, Jacobson K, Schaller MD. MAP kinases and cell migration. Journal of cell science. 2004; 117(20): 4619-28. http:doi:10.1242/jcs.01481.
31.    Chakraborti S, Mandal M, Das S, Mandal A, Chakraborti T. Regulation of matrix metalloproteinases: an overview. Molecular and Cellular Biochemistry. 2003; 253: 269-85. http:doi:10.1023/a:1026028303196.
32.    Balmanno K, Cook SJ. Tumour cell survival signalling by the ERK1/2 pathway. Cell Death and Differentiation. 2009; 16(3): 368-77. http:doi:10.1038/cdd.2008.148.
33.    Ley R, Balmanno K, Hadfield K, Weston C, Cook SJ. Activation of the ERK1/2 signaling pathway promotes phosphorylation and proteasome-dependent degradation of the BH3-only protein, Bim. Journal of Biological Chemistry. 2003; 278(21): 18811-6. http:doi:10.1074/jbc.m301010200.
34.    Fu Z, Tindall DJ. FOXOs, cancer and regulation of apoptosis. Oncogene. 2008; 27(16): 2312-9. http:doi:10.1038/onc.2008.24.
35.    Shore GC, Warr MR. Unique biology of Mcl-1: therapeutic opportunities in cancer. Current Molecular Medicine. 2008;8(2):138-47.http:doi:10.2174/156652408783769580
36.    Chaparro M, González Moreno L, Trapero‐Marugan M, Medina J, Moreno‐Otero R. Pharmacological therapy for hepatocellular carcinoma with sorafenib and other oral agents. Alimentary Pharmacology and Therapeutics. 2008; 28(11‐12): 1269-77. http:doi:10.1111/j.1365-2036.2008.03857.x. 
37.    Hynes NE, MacDonald G. ErbB receptors and signaling pathways in cancer. Current Opinion in Cell Biology. 2009; 21(2): 177-84. http:doi:10.1016/j.ceb.2008.12.010. 
38.    Nagahara H, Mimori K, Ohta M, Utsunomiya T, Inoue H, Barnard GF, Ohira M, Hirakawa K, Mori M. Somatic mutations of epidermal growth factor receptor in colorectal carcinoma. Clinical Cancer Research. 2005; 11(4): 1368-71. http:doi:10.1158/1078-0432.ccr-04-1894.
39.    Dy GK, Adjei AA. emerging therapeutic targets in non–small cell lung cancer. Proceedings of the American Thoracic Society. 2009; 6(2): 218-23. http:doi:10.1513/pats.200808-099lc.
40.    Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, Naoki K. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004; 304(5676): 1497-500. http:doi:10.1126/science.1099314.
41.    Zhu JQ, Zhong WZ, Zhang GC, Li R, Zhang XC, Guo AL, Zhang YF, An SJ, Mok TS, Wu YL. Better survival with EGFR exon 19 than exon 21 mutations in gefitinib-treated non-small cell lung cancer patients is due to differential inhibition of downstream signals. Cancer Letters. 2008; 265(2): 307-17. http:doi:10.1016/ j.canlet.2008.02.064.
42.    Engelman JA, Chen L, Tan X, Crosby K, Guimaraes AR, Upadhyay R, Maira M, McNamara K, Perera SA, Song Y, Chirieac LR. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nature Medicine. 2008; 14(12): 1351-6. http:doi:10.1038/ nm.1890.
43.    Downward J. Targeting RAS and PI3K in lung cancer. Nature medicine. 2008; 14(12): 1315-6. http:doi:10.1038/nm1208-1315.
44.    Frödin M, Sekine N, Roche E, Filloux C, Prentki M, Wollheim CB, et al. Glucose, other secretagogues, and nerve growth factor stimulate mitogen-activated protein kinase in the insulin-secreting β-cell line, INS-1. Jour. Bio. Chem., 1995; 270(14): 7882–9. http:doi:10.1074/jbc.270.14.7882.
45.    Khoo S, Cobb MH. Activation of mitogen-activating protein kinase by glucose is not required for insulin secretion. Proceedings of the National Academy of Sciences. 1997; 94(11): 5599-604. http:doi:10.1073/pnas.94.11.5599.
46.    Benes C, Roisin MP, Van Tan H, Creuzet C, Miyazaki JI, Fagard R. Rapid activation and nuclear translocation of mitogen-activated protein kinases in response to physiological concentration of glucose in the MIN6 pancreatic β cell line. Journal of Biological Chemistry. 1998; 273(25): 15507-13. http:doi:10.1074/ jbc.273.25.15507.
47.    Gibson TB, Lawrence MC, Gibson CJ, Vanderbilt CA, McGlynn K, Arnette D, Chen W, Collins J, Naziruddin B, Levy MF, Ehrlich BE. Inhibition of glucose-stimulated activation of Extracellular Signal–Regulated protein kinases 1 and 2 by Epinephrine in pancreatic β-Cells. Diabetes. 2006; 55(4): 1066-73. http:doi:10.2337/diabetes.55.04.06.db05-1266.
48.    Arnette D, Gibson TB, Lawrence MC, January B, Khoo S, McGlynn K, Vanderbilt CA, Cobb MH. Regulation of ERK1 and ERK2 by glucose and peptide hormones in pancreatic β cells. Journal of Biological Chemistry. 2003; 278(35): 32517-25. http:doi:10.1074/jbc.m301174200.
49.    Gomez E, Pritchard C, Herbert TP. cAMP-dependent protein kinase and Ca2+ influx through L-type voltage-gated calcium channels mediate Raf-independent activation of extracellular regulated kinase in response to glucagon-like peptide-1 in pancreatic β-cells. Journal of Biological Chemistry. 2002; 277(50): 48146-51. http:doi:10.1074/jbc.m209165200.
50.    Khoo S, Griffen SC, Xia Y, Baer RJ, German MS, Cobb MH. Regulation of insulin gene transcription by ERK1 and ERK2 in pancreatic β cells. Journal of Biological Chemistry. 2003; 278(35): 32969-77. https://doi.org/10.1074/jbc.M301198200.
51.    Lawrence MC, McGlynn K, Park BH, Cobb MH. ERK1/2-dependent activation of transcription factors required for acute and chronic effects of glucose on the insulin gene promoter. Journal of Biological Chemistry. 2005; 280(29): 26751-9. https://doi.org/10.1074/jbc.M503158200.
52.    German M, Ashcroft S, Docherty K, Edlund H, Edlund T, Goodison S, Imura H, Kennedy G, Madsen O, Melloul D, Moss L. The insulin gene promoter: a simplified nomenclature. Diabetes. 1995; 44(8): 1002-4. https://doi.org/10.2337/diab.44.8.1002.
53.    Malecki MT. Genetics of type 2 diabetes mellitus. Diabetes Research and Clinical Practice. 2005; 68: S10-21. https://doi.org/ 10.1016/j.diabres.2005.03.003.
54.    Sharma A, Olson LK, Robertson RP, Stein R. The reduction of insulin gene transcription in HIT-T15 beta cells chronically exposed to high glucose concentration is associated with the loss of RIPE3b1 and STF-1 transcription factor expression. Molecular Endocrinology. 1995; 9(9): 1127-34. https://doi.org/10.1210/ mend.9.9.7491105.
55.    Lu M, Seufert J, Habener JF. Pancreatic β-cell-specific repression of insulin gene transcription by CCAAT/enhancer-binding protein β: inhibitory interactions with basic helix-loop-helix transcription factor E47. Journal of Biological Chemistry. 1997; 272(45): 28349-59. https://doi.org/10.1074/jbc.272.45.28349.
56.    Harding HP, Ron D. Endoplasmic reticulum stress and the development of diabetes: a review. Diabetes. 2002; 51(suppl_3): S455-61. https://doi.org/10.2337/diabetes.51.2007.S455.
57.    Oyadomari S, Araki E, Mori M. Endoplasmic reticulum stress-mediated apoptosis in pancreatic β-cells. Apoptosis. 2002; 7: 335-45. https://doi.org/10.1023/A:1016175429877.
58.    Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang Y, Jungreis R, Nagata K, Harding HP, Ron D. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes and Development. 2004; 18(24): 3066-77. https://doi.org/10.1101/gad.1250704.
59.    Oyadomari S, Koizumi A, Takeda K, Gotoh T, Akira S, Araki E, Mori M. Targeted disruption of the Chop gene delays endoplasmic reticulum stress–mediated diabetes. The Journal of Clinical Investigation. 2002; 109(4): 525-32. https://doi.org/10.1172/ JCI0214550.
60.    Lawrence MC, McGlynn K, Naziruddin B, Levy MF, Cobb MH. Differential regulation of CHOP-10/GADD153 gene expression by MAPK signaling in pancreatic β-cells. Proceedings of the National Academy of Sciences. 2007; 104(28): 11518-25. https://doi.org/10.1073/pnas.0704618104.


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available