Author(s): Khadija Akhlaque Siddiqui, Prashant Lakshaman Pingale, Sahebrao Sampat Boraste, Sunil Vishvnath Amrutkar, Dattatraya Manohar Shinkar

Email(s): dattashinkar@gmail.com

DOI: 10.52711/0974-360X.2025.00723   

Address: Khadija Akhlaque Siddiqui1, Prashant Lakshaman Pingale1, Sahebrao Sampat Boraste1, Sunil Vishvnath Amrutkar2, Dattatraya Manohar Shinkar1*
1Department of Pharmaceutics, Gokhale Education Society’s Sir Dr. M. S. Gosavi College of Pharmaceutical Education and Research, Prin. T. A. Kulkarni Vidyanagar, College Road, Nashik-422005, MS, India.
2Department of Pharmaceutical Chemistry, Gokhale Education Society’s Sir Dr. M. S. Gosavi College of Pharmaceutical Education and Research, Prin. T. A. Kulkarni Vidyanagar, College Road, Nashik-422005, MS, India.
*Corresponding Author

Published In:   Volume - 18,      Issue - 10,     Year - 2025


ABSTRACT:
Bacterial meningitis is a life-threatening infection of the meninges, often caused by Neisseria meningitidis, Streptococcus pneumoniae, and Haemophilus influenzae type b. Symptoms include high fever, headache, neck stiffness, photophobia, nausea, vomiting, and altered mental status. Diagnosis is confirmed via cerebrospinal fluid analysis, and treatment requires broad-spectrum intravenous antibiotics and corticosteroids. This study aimed to develop a thermoreversible in-situ nasal gel for Moxifloxacin HCl to enhance brain targeting and CNS absorption, reducing enzymatic breakdown and side effects. Using polymers like Xanthan gum, HPMC K4M, and Carbopol-940, the optimized gel demonstrated quick gelling, strong bioadhesion, and high ex-vivo absorption. Stability tests confirmed long-term efficacy. Further in-vivo research is needed to validate these results for meningitis treatment.


Cite this article:
Khadija Akhlaque Siddiqui, Prashant Lakshaman Pingale, Sahebrao Sampat Boraste, Sunil Vishvnath Amrutkar, Dattatraya Manohar Shinkar. Development of In Situ Nasal Gel of Moxifloxacin HCl for Brain Targeting: Design, Optimization and In-vitro Evaluation. Research Journal of Pharmacy and Technology. 2025;18(10):5003-0. doi: 10.52711/0974-360X.2025.00723

Cite(Electronic):
Khadija Akhlaque Siddiqui, Prashant Lakshaman Pingale, Sahebrao Sampat Boraste, Sunil Vishvnath Amrutkar, Dattatraya Manohar Shinkar. Development of In Situ Nasal Gel of Moxifloxacin HCl for Brain Targeting: Design, Optimization and In-vitro Evaluation. Research Journal of Pharmacy and Technology. 2025;18(10):5003-0. doi: 10.52711/0974-360X.2025.00723   Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-10-62


REFERNCES:
1.    Sandey L, Shambhakar S, Rathore S. Role of new drug delivery system in brain disorder: Narcolepsy. Research Journal of Pharmacy and Technology. 2023; 16(11): 5502-5. http://dx.doi.org/10.52711/0974-360X.2023.00890
2.    Crowe TP, Hsu WH. Evaluation of recent intranasal drug delivery systems to the central nervous system. Pharmaceutics. 2022 Mar 12; 14(3): 629. https://doi.org/10.3390/pharmaceutics14030629
3.    Khunt D, Misra M. An overview of anatomical and physiological aspects of the nose and the brain. Direct Nose-to-Brain Drug Delivery. 2021; Jan 1: 3-14. https://doi.org/10.1016/B978-0-12-822522-6.00029-1
4.    Kumar Y, Jaiswal P, Panda D, Nigam KD, Biswas KG. A critical review on nanoparticle-assisted mass transfer and kinetic study of biphasic systems in millimeter-sized conduits. Chemical Engineering and Processing-Process Intensification. 2022 Jan 1; 170: 108675. https://doi.org/10.1016/j.cep.2021.108675
5.    Patil M. Mucoadhesion as a strategy to enhance the direct nose-to-brain drug delivery. Indirect Nose-to-Brain Drug Delivery. 2021 Jan 1: 115-156. https://doi.org/10.1016/B978-0-12-822522-6.00007-2
6.    Kumar S, Tomar D, Kumar D, Kishore V. Applications of Polymeric Nanoparticle in Nose to Brain Drug Delivery. Research Journal of Pharmacy and Technology. 2023; 16(12): 6087-94. http://dx.doi.org/10.52711/0974-360X.2023.00988
7.    Kondepati HV, Kulyadi GP, Tippavajhala VK. A Review on in Situ gel forming ophthalmic drug delivery systems. Research Journal of Pharmacy and Technology. 2018; 11(1): 380-6. http://dx.doi.org/10.5958/0974-360X.2018.00069.0
8.    Hard SA, Shivakumar HN, Redhwan MA. Development and optimization of in-situ gel containing chitosan nanoparticles for possible nose-to-brain delivery of vinpocetine. International Journal of Biological Macromolecules. 2023; Dec 31; 253: 127217. https://doi.org/10.1016/j.ijbiomac.2023.127217
9.    Srivastava SK, Prasad M, Jha AK. Development and Evaluation of Thermo Triggered in situ Nasal Gel of Selegiline for Depressive Disorders: In vitro, in vivo and ex vivo Characterization. Research Journal of Pharmacy and Technology. 2022; 15(4): 1424-30. http://dx.doi.org/10.52711/0974-360X.2022.00236
10.    van Soest TM, Chekrouni N, van Sorge NM, Bijlsma MW, Brouwer MC, van de Beek D. Epidemiology, clinical features and outcome of adults with meningococcal meningitis: a 15-year prospective nationwide cohort study. The Lancet Regional Health–Europe. 2023; Jul 1; 30. https://doi.org/10.1016/j.lanepe.2023.100640
11.    Mahmoud IS, Altaif KI, Hailat IA, Al-Jewari WM, Wayyes A. Multi-drug Resistant bacterial causes of Meningitis in different age groups. Research Journal of Pharmacy and Technology. 2022; 15(7): 2983-6. http://dx.doi.org/10.52711/0974-360X.2022.00497
12.    Munir B, Hidayati DY, Nazwar TA, Raras TM, Prawiro SR. The Ag38-rec Mycobacterium tuberculosis antigen as a new candidate marker for the diagnostic of tuberculosis meningitis: In silico approach. Research Journal of Pharmacy and Technology. 2023; 16(11): 5289-95. http://dx.doi.org/10.52711/0974-360X.2023.00857
13.    Villalpando-Carrión S, Henao-Martínez AF, Franco-Paredes C. Epidemiology and Clinical Outcomes of Bacterial Meningitis in Children and Adults in Low-and Middle-Income Countries. Current Tropical Medicine Reports. 2024; Feb 22: 1-8. https://doi.org/10.1007/s40475-024-00316-0
14.    Gunda RK, Vijayalakshmi A, Masilamani K. Development, In-vitro and In-vivo evaluation of gastro retentive formulations for moxifloxacin hcl. Research Journal of Pharmacy and Technology. 2020; 13(10): 4668-74. http://dx.doi.org/10.5958/0974-360X.2020.00821.5
15.    Wani M, Jagdale S, Khanna P, Gholap R, Baheti A. Formulation and evaluation of ophthalmic In-situ gel using moxifloxacin coated silver nanoparticles. Research Journal of Pharmacy and Technology. 2020; 13(8): 3623-30. http://dx.doi.org/10.5958/0974-360X.2020.00641.1
16.    Gunda RK, Vijayalakshmi A, Masilamani K. Development, In-vitro and In-vivo evaluation of gastro retentive formulations for moxifloxacin hcl. Research Journal of Pharmacy and Technology. 2020; 13(10): 4668-74. http://dx.doi.org/10.5958/0974-360X.2020.00821.5
17.    Obayes KK, Thomas LM. Development and Characterization of Hyaluronic Acid-Incorporated Thermosensitive Nasal in situ Gel of Meclizine Hydrochloride. Al-Rafidain Journal of Medical Sciences. 2024; Jan 24; 6(1): 97-104. https://doi.org/10.54133/ajms.v6i1.499
18.    Jorapur D, Nagesh C, Suma N, Chandrasekhara S, Attimarad SL, Kengeri S. Ion sensitive floating in situ gel for controlled delivery of famotidine and domperidone maleate for the treatment of gastro oesophageal reflux disease. Research Journal of Pharmacy and Technology. 2018; 11(5): 1984-9.http://dx.doi.org/10.5958/0974-360X.2018.00369.4
19.    Subramanian S, Prasanth B. Sustained ophthalmic delivery of pH triggered Cromolyn sodium in situ gel. Research Journal of Pharmacy and Technology. 2021; 14(12): 6211-5.http://dx.doi.org/10.52711/0974-360X.2021.01075
20.    Sultana SM, Devi AS. Design optimization and pharmacokinetic study of eletriptan hydrobromide loaded solid lipid nanoparticle nasal gel targeted to brain. Research Journal of Pharmacy and Technology. 2024; 17(4): 1858-66. http://dx.doi.org/10.52711/0974-360X.2024.00295
21.    Sreelakshmi C, Sivakumar R, Giridas S, Fathima R, Vijaykumar B. In situ gel of Nifedipine: an approach for extended release with Zero order kinetics. Research Journal of Pharmacy and Technology. 2018; 11(4): 1293-7. http://dx.doi.org/10.5958/0974-360X.2018.00240.8
22.    Sarma A, Das MK, Chakraborty T, Das S. Nanostructured lipid carriers (NLCs)-based intranasal Drug Delivery System of Tenofovir disoproxil fumerate (TDF) for brain targeting. Res. J. Pharm. Technol. 2020; 13: 5411-24. http://dx.doi.org/10.5958/0974-360X.2020.00946.4
23.    Upasana K, Rathore KS, Saini S, Meenakshi B. Formulation and evaluation of ketorolac tromethamine using 32 factorial design. Research Journal of Pharmacy and Technology. 2020; 13(6): 2556-62. http://dx.doi.org/10.5958/0974-360X.2018.00523.1
24.    Malekar NS, Gondkar SB, Bhairav BA, Paralkar PS, Saudagar RB. Development of naratriptan hydrochloride in-situ nasal gel. Research Journal of Pharmacy and Technology. 2017; 10(4): 979-85. http://dx.doi.org/10.5958/0974-360X.2017.00178.0
25.    Srivastava SK, Prasad M, Jha AK. Development and Evaluation of Thermo Triggered in situ Nasal Gel of Selegiline for Depressive Disorders: In vitro, in vivo and ex vivo Characterization. Research Journal of Pharmacy and Technology. 2022; 15(4): 1424-30. http://dx.doi.org/10.52711/0974-360X.2022.00236
26.    Mathure D, Madan JR, Ranpise HA, Awasthi R, Dua K, Gujar KN. Formulation and Evaluation of Nano structured lipid carriers for intranasal delivery of Buspirone hydrochloride. Research Journal of Pharmacy and Technology. 2021; 14(2): 585-93. http://dx.doi.org/10.5958/0974-360X.2021.00105.0
27.    Mahajan N, Shende S, Dumore N, Nasare L. Development and evaluation of ion induced in situ gelling system of opoid analgesic for nose to brain delivery. Research Journal of Pharmacy and Technology. 2019; 12(10): 4741-6. http://dx.doi.org/10.5958/0974-360X.2019.00817.5
28.    Shivsharan US, Hosmani AH, Thorat YS, Navale RB. Ion-sensitive in situ gelling solution containing tobramycin for management of ocular infections. Research Journal of Pharmacy and Technology. 2023; 16(9): 4070-6. http://dx.doi.org/10.52711/0974-360X.2023.00667
29.    Nagaraju R, Rajeswari U, Ravi G, Bose P, Saritha D. Development and in vitro Characterization of Intranasal Microemulsions of Sumatriptan Succinate for brain Targeting. Research Journal of Pharmacy and Technology. 2021; 14(4): 2062-8. http://dx.doi.org/10.52711/0974-360X.2021.00366
30.    Shukla S, Upadhyay S, Gupta RK. Formulation and Evaluation of Griseofulvin Solid Dispersion incorporated gel for topical application. Research Journal of Pharmacy and Technology. 2022; 15(10): 4389-94. http://dx.doi.org/10.52711/0974-360X.2022.00736
31.    Yadav D, Mazumder A, Khar RK. Preparation and characterization of mucoadhesive nanoemulsion containing piperine for nasal drug delivery system. Research Journal of Pharmacy and Technology. 2021; 14(5): 2381-6. http://dx.doi.org/10.52711/0974-360X.2021.00420
32.    Xiang J, Wei D, Mao W, Liu T, Luo Q, Huang Y, Liang Z, Luo X. Comprehensive kinetic study of carbon dioxide absorption in blended tertiary/secondary amine solutions: Experiments and simulations. Separation and Purification Technology. 2024; Feb 1; 330: 125310. https://doi.org/10.1016/j.seppur.2023.125310
33.    Shaikh DA, Momin MM. Formulation and evaluation of ion-triggered in situ gel for effective ocular delivery of ciprofloxacin HCl and olopatadine HCl in combination. Drug Delivery Letters. 2024; 14(1): 49-66. https://doi.org/10.2174/0122103031267809231128111259
34.    El-Shenawy AA, Mahmoud RA, Mahmoud EA, Mohamed MS. Intranasal in situ gel of apixaban-loaded nanoethosomes: Preparation, optimization, and in vivo evaluation. AAPS PharmSciTech. 2021; 22(4): 147. https://doi.org/10.1208/s12249-021-02020-y
35.    Patil R, Patil AS, Chougule K, Gaude Y, Masareddy RS. Intranasal administration of innovative triamcinolone acetonide encapsulated cubosomal in situ gel: formulation and characterization. Drug Development and Industrial Pharmacy. 2024; Jan 2; 50(1): 68-77. https://doi.org/10.1080/03639045.2023.2297275
36.    Ibrahim N, Elzanfaly ES, El Gendy AE, Hassan SA. Development, optimization, and validation of a green spectrofluorimetric method for the determination of moxifloxacin using an experimental design approach. Research Journal of Pharmacy and Technology. 2021; 14(4): 1880-6. http://dx.doi.org/10.52711/0974-360X.2021.00332
37.    Verekar RR, Gurav SS, Bolmal U. Thermosensitive mucoadhesive in situ gel for intranasal delivery of Almotriptan malate: Formulation, characterization, and evaluation. Journal of Drug Delivery Science and Technology. 2020; 58: 101778. https://doi.org/10.1016/j.jddst.2020.101778
38.    Rozali NL, Azizan KA, Singh R, Jaafar SN, Othman A, Weckwerth W, Ramli US. Fourier transform infrared (FTIR) spectroscopy approach combined with discriminant analysis and prediction model for crude palm oil authentication of different geographical and temporal origins. Food Control. 2023; Apr 1; 146: 109509 https://doi.org/10.1016/j.foodcont.2022.109509
39.    Burnier C, Favre V, Massonnet G. The use of an optimized DRIFTS-FTIR method for the forensic analysis and classification of silicone condom lubricants. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2021; Nov 15; 261: 120025. https://doi.org/10.1016/j.saa.2021.120025
40.    Hamzah ML, Kassab HJ, Alshahrani SM. Formulation and development of frovatriptan succinate in situ gel for nasal drug delivery: In vitro and ex vivo evaluation. Pakistan Journal of Pharmaceutical Sciences. 2024; May 1; 37(3). doi.org/10.36721/PJPS.2024.37.3.REG.515-525.1

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available