Author(s): David Tjahyadi, Edy Parwanto, Hosea Jaya Edy, Joey Joshua Vidova Tjahyadi, Laurentia Gabrielle, Ashaolu Victoria Oladimeji, Seçil Karahüseyin

Email(s): davesaboch@trisakti.ac.id

DOI: 10.52711/0974-360X.2025.00704   

Address: David Tjahyadi1*, Edy Parwanto2, Hosea Jaya Edy3, Joey Joshua Vidova Tjahyadi4, Laurentia Gabrielle4, Ashaolu Victoria Oladimeji5, Seçil Karahüseyin6
1Department of Histology, Faculty of Medicine, Universitas Trisakti, Indonesia.
2Department of Biology, Faculty of Medicine, Universitas Trisakti, Indonesia.
3Study Program of Pharmacy, Faculty of Math, and Natural Sciences, Universitas Sam Ratulangi, Indonesia.
4Medical Education Program, Faculty of Medicine, Universitas Trisakti, Indonesia.
5Department of Chemistry, Loyola Institute of Frontier Energy, Loyola college, Chennai, India.
6Department of Pharmacognosy, Faculty of Pharmacy, Çukurova Universitesi, Turkey.
*Corresponding Author

Published In:   Volume - 18,      Issue - 10,     Year - 2025


ABSTRACT:
Facts show that many Indonesians are smokers. Some of these smokers are kretek smokers. Kretek is made from a mixture of tobacco, cloves, and sauce. Kretek smoke is toxic, and affects the cerebellum, especially Purkinje cells. Aim of this study was to determine the effects of kretek smoke on the Purkinje cells of rats. CG (control group) were rats that breathed using normal air (not exposed to kretek smoke). TG (treatment group) were rats that were exposed to smoke of kretek 1 stick/day for 1 month (30 days). Observations were made on the morphology of the rat brain and histology on the cerebellum. Qualitative and quantitative observations were made on Purkinje cells (area, perimeter, length, and width). The nicotine content in the kretek cigarettes used in this study was 3.88±0.05µg/g. Exposure to kretek smoke of 1 stick/day for 1 month in rats demonstrated that the brain did not experience changes in shape, but Purkinje cells in the cerebellum became abnormal in both shape and size. Purkinje cells area of rats in CG was higher than TG (p = 0.000). Purkinje cells perimeter of rats in CG was higher than TG (p = 0.000). Purkinje cells length of rats in CG was higher than TG (p = 0.000). Purkinje cells width of rats in CG was higher than TG (p = 0.000). Exposure to kretek smoke of 1 stick/day for 1 month did not change the morphology of the rat brain, but reduced the size of Purkinje cell bodies, and changed the shape from round to tapered as a sign of cell degeneration.


Cite this article:
David Tjahyadi, Edy Parwanto, Hosea Jaya Edy, Joey Joshua Vidova Tjahyadi, Laurentia Gabrielle, Ashaolu Victoria Oladimeji, Seçil Karahüseyin. Histometric Analysis to Perform Purkinje cell Abnormalities in Rats Due to Low doses of Kretek Smoke Exposure. Research Journal of Pharmacy and Technology. 2025;18(10):4882-0. doi: 10.52711/0974-360X.2025.00704

Cite(Electronic):
David Tjahyadi, Edy Parwanto, Hosea Jaya Edy, Joey Joshua Vidova Tjahyadi, Laurentia Gabrielle, Ashaolu Victoria Oladimeji, Seçil Karahüseyin. Histometric Analysis to Perform Purkinje cell Abnormalities in Rats Due to Low doses of Kretek Smoke Exposure. Research Journal of Pharmacy and Technology. 2025;18(10):4882-0. doi: 10.52711/0974-360X.2025.00704   Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-10-43


REFERENCES:
1.    World Health Organization (WHO). WHO report on the global tobacco epidemic 2021. World Health Organ- ization: New York 2021. Available from: https://www.who.int/publications/i/item/9789240032095
2.    Kementerian Kesehatan Republik Indonesia (Kemenkes RI). Laporan Nasional Riset Kesehatan Dasar Indo- nesia 2018. Riskesdas 2018. Available at: https://www.litbang.kemkes.go.id/laporan-risetkesehatan-dasar- riske sdas//
3.    Amalia B, Cadogan SL, Prabandari YS, et al. Socio-Demographic inequalities in cigarette smoking in Indone- sia, 2007 to 2014. Prev Med 2019; 123:27–33.
4.    Palipudi K, Mbulo L, Kosen S, et al. A cross sectional study of kretek smoking in Indonesia as a Major risk to public health. Asian Pac J Cancer Prev 2015; 16(16): 6883-8. http://dx.doi.org/10.7314/APJCP.2015.16 16.6883 PMID: 26514461
5.    Hajdusianek W, Żórawik A, Waliszewska-Prosół M, et al. Tobacco and nervous system development and function new findings 2015–2020. Brain Sci. 2021; 11: 1-15.
6.    Cohen JE, Amalia B, Luo W, et al. Eugenol, menthol and other flavour chemicals in kreteks and 8white9 cigarettes purchased in Indonesia. Tob Control 2023; 0:1–4. doi:10.1136/tc-2022-057827].
7.    Rostami AA, Campbell JL, Pithawalla YB, et al. A comprehensive physiologically based pharmacokinetic (PBPK) model for nicotine in humans from using nicotine containing products with different routes of expo- sure. Sci Reports 2022; 12: 1-18.
8.    Mishra A, Kumar R, Mishra SN, et al. Nicotine addiction and psychological stress: a case-control study among the unemployed North Indians. Res Square Preprint 2022; 1-19.
9.    Rodgers J, Friede T, Vonberg FW, et al. The impact of smoking cessation on multiple sclerosis disease pro- gression. Brain, 2022; 145(4): 1368-1378. DOI: https://doi.org/10.1093/brain/awab385. Available at http://ac- ademic.oup.com/brain/article/145/4/1368/6384574?login=false.
10.    Parwanto E, Tjahyadi D, Sisca S, et al. Low doses of kretek cigarette smoke altered rat lung histometric, and overexpression of the p53 gene. Open Respir Med J, 2024; 18(e18743064285619): 1-13.http://dx.doi.org/10.2174/0118743064285619240327055359.
11.    Shiratsuchi A, Kidoura Y, Toriba A, et al. Effects of tobacco smoke on the expression of virulence genes in Escherichia coli. Narra J 2024; 4(1): e754. http://doi.org/10.52225/narra.v4i1.754.
12.    Kim HW, Oh SH, Lee SJ, et al. Differential synapse density between Purkinje cell dendritic spine and parallel fiber varicosity in the rat cerebellum among the phylogenic lobules. Appl Microscopy. 2020; 50(6): 1-6. https://doi.org/10.1186/s42649-020-00027-6.
13.    Hauser KF, Khurdayan VK, Goody RJ, et al. Selective vulnerability of cerebellar granule neuroblasts and their progeny to drugs with abuse liability. Cerebellum 2003; 2(3): 184-195. doi: 10.1080/14734220310016132.
14.    Bela Nusa G, Suci Widyastiti NS. Perbedaan neutrophil-lymphocyte ratio pada subjek bukan perokok, perokok ringan dan perokok sedang-berat. J Kedokt Diponegoro 2016; 5 (4): 903-910.
15.    Inoue-Choi M, Christensen CH, Rostron BL, et al. Dose-response association of low-intensity and nondaily smoking with mortality in the United States. JAMA Network Open 2020; 3(6; e206436): 1-11. doi:10.1001/jamanetworkopen.2020.6436.
16.    Tjahyadi D, Parwanto E, Amalia H, et al. Decreased density of pyramidal cells in the cerebral cortex, and Purkinje cells in the cerebellar cortex of Sprague-Dawley rats after being exposed to filtered kretek cigarette smoke. J Biol Resc 2023; 96(10757): 1-6. doi:10.4081/jbr.2023.10757.
17.    Tjahyadi D, Parwanto E, Sisca, et al. Effects of low-dose filtered kretek cigarette smoke on bronchial smooth muscle in male Sprague-Dawley rats. Univ Med 2023; 42: 263-75. doi:10.18051/UnivMed 2023.v42: 263 - 275.
18.    Arifin WN, Zahiruddin WM. Sample size calculation in animal studies using resource equation approach. Malays J Med Sci. 2017; 24(5): 101–105. https://doi.org/10.21315/mjms2017.24.5.11.
19.    Vishwas AS. An observational study to assess the nicotine dependence among tobacco users in selected rural areas of Udaipur (Raj). IJANM 2019; 7(3): 194-196. doi: 10.5958/2454-2652.2019.00045.3
20.    Kurgat CC, Kibet JK, Cheplogoi PK, et al. Determination of major tobacco alkaloids in mainstream cigarette smoking. Asian J. Research Chem. 2016; 9(5): 205-211. doi: 10.5958/0974-4150.2016.00035.3.
21.    Gottlieb S, Zeller M. A nicotine-focused framework for public health. N Engl J Med 2017; 377(12): 1111- 1114. doi: 10.1056/NEJMp1707409.
22.    Smith TT, Hatsukami DK, Benowitz NL, et al. Whether to push or pull? Nicotine reduction and non-combusted alternatives - Two strategies for reducing smoking and improving public health. Prev Med 2018; 117: 8-14. doi: 10.1016/j.ypmed.2018.03.021.
23.    Pei D, Reynolds RM, Ntansah CA, et al. Independent and combined effects of very low nicotine cigarette messages and e-cigarette messages: a randomized clinical trial. Tob Control 2024; 0: 1–9. doi:10.1136/tc- 2023-058556.
24.    Rosy JS. E Cigarette. IJANM 2019; 7(1): 74-76. doi: 10.5958/2454-2652.2019.00018.0
25.    Hatsukami DK, Jensen JA, Carroll DM, et al. Reduced nicotine in cigarettes in a marketplace with alternative nicotine systems: randomized clinical trial. The Lancet 2024; 35: 1-14. DOI: https://doi.org/10.1016/j.lana.2024.100796.
26.    Krishnamurthy K, Zin T, Priyamvatha K, et al. Detection of nicotine by a new system. Asian J Pharm Ana 2022; 12(3): 179-180. doi: 10.52711/2231-5675.2022.00030
27.    Sangrulkar SS. Insight on self changing strategies to quit smoking among smokers in selected metropolitan city. IJANM. 2022; 10(2): 129-131. doi: 10.52711/2454-2652.2022.00033
28.    Patle P, Tenpe C, Rathod S, et al. Effect 1 of NMDA receptor agonist and antagonist on nicotine withdrawal induced hyperexcitability in mice. AJPSci. 2021; 11(3): 205-2. doi: 10.52711/2231-5659.2021.00033
29.    Nagarnaik M, Dhakulkar A, Sarjoshi A, et al. A study of validation and uncertainty in real samples of nicotine polacrilex gum by reverse phase HPLC. Asian J Pharm Ana. 2014; 4(4): 156-161.
30.    Upadhyay A, Mishra A, Chaudhury S, et al. Mitochondrial anti-oxidant enzymes caused by cigarette smoke in experimental wistar rat. Research J Pharm and Tech. 2009; 2 (4): 690-693.
31.    Francomano F, Caruso A, Barbarossa A, et al. β-caryophyllene: a sesquiterpene with countless biological properties. Appl. Sci. 2019; 9(5420): 1-19. doi:10.3390/app9245420.
32.    Andrianto A, Ardiana M, Wardhani P, et al. The effects of ketone body β-hydroxybutyrate on eNOS levels and VCAM-1 expression in wistar rats exposed to cigarette smoke. 2235-0. doi: 10.52711/0974-360X.2024.00352
33.    Faizan M, Kumar R, Mazumder A, et al. Hantzsch reaction: the important key for pyridine/dihydropyridine synthesis. Synth Communications, 2024: 1–24. https://doi.org/10.1080/00397911.2024.2377738.
34.    Tengku Muda Tg FM, Ismail ZIM, Abdullah S, et al. The effects of honey on inflammatory cells in cigarette smoke affected lungs in rats: a preliminary study. Research J Pharm and Tech 2014; 7(12): 1382-1386.
35.    Varma P, Otageri J, Kandasubramanian B. Biodiesel from fats: fatty acid feedstock as a circular economy solution. Int J Green Energy 2024, February: 1–21. https://doi.org/10.1080/15435075.2024.2319219.
36.    Lu X, Li G, Liu Y, et al. The role of fatty acid metabolism in acute lung injury: a special focus on immunome- tabolism. Cell Mol Life Sci. 2024; 81(1):120. doi: 10.1007/s00018-024-05131-4.
37.    Hadi MY, Mohammed GJ, Hameed IH. Analysis of bioactive chemical compounds of Nigella sativa using gas chromatography-mass spectrometry. J Pharmacognosy Phytother 2016; 8(2): 8-24. DOI: 10.5897/JPP2015.0364.
38.    Sary R, Ramsis MN. Computerized tomography and morphological studies on the brain of the rat (Rattus Norvegicus) and its blood supply. J Vet Anat 2023; 16(1): 1-12. DOI: 10.21608/JVA.2023.292388.
39.    Aboghazleh R, Boyajian SD, Atiyat A, et al. Rodent brain extraction and dissection: A comprehensive ap- proach. MethodsX 2024; 12 (102516): 1-10. https://doi.org/10.1016/j.mex.2023.102516.
40.    Csabai D, Cseko K, Szaiff L, et al. Low intensity, long term exposure to tobacco smoke inhibits hippocampal neurogenesis in adult mice. Behav Brain Res 2016; 302: 44–52. doi: 10.1016/j.bbr.2016.01.022.
41.    Emma R, Caruso M, Campagna D, et al. The impact of tobacco cigarettes, vaping products and tobacco heating products on oxidative stress. Antioxidants 2022; 11, 1829: 1-28. https:// doi.org/10.3390/antiox11091829.
42.    Wu T, Xu K, Liu C, et al. Interleukin-37 ameliorates cigarette smoke-induced lung inflammation in mice. Biomed Pharmacother. 2022; 155 (113684): 1-7. https://doi.org/10.1016/j.biopha.2022.113684.
43.    Zhang W, Zhang Y, Zhu Q. Cigarette smoke extract-mediated FABP4 upregulation suppresses viability and induces apoptosis, inflammation and oxidative stress of bronchial epithelial cells by activating p38 MAPK/MK2 signaling pathway. J Inflamm (Lond). 2022; 19 (7): 1-11. doi: 10.1186/s12950-022-00304-z.
44.    Marusich JA, Darna M, Wilson AG, et al. Tobacco's minor alkaloids: effects on place conditioning and nucleus accumbens dopamine release in adult and adolescent rats. Eur J Pharmacol. 2017 ; 814: 196-206. doi: 10.1016/j.ejphar.2017.08.029.
45.    Rodgman A, Perfetti TA. The chemical components of tobacco and tobacco smoke. 2013, Second edition. Boca Raton, FL, USA: CRC Press, Taylor and Francis Group.
46.    Chang Y, Thornton V, Chaloemtoem A, et al. Investigating the relationship between smoking behavior and global brain volume. Biol Psychiatry Glob Open Sci. 2023; 4(1): 74-82. doi: 10.1016/j.bpsgos.2023.09.006.
47.    Chellian R, Wilks I, Levin B, et al. Tobacco smoke exposure enhances reward sensitivity in male and female rats. Psychopharmacol (Berl). 2021; 238(3): 845-855. doi: 10.1007/s00213-020-05736-0.
48.    Vňuková M, Ptáček R, Raboch J, et al. Decreased central nervous system grey matter volume (gmv) in smokers affects    cognitive    abilities:    a    systematic     review. Med     Sci     Monit 2017;   23:     1907–1915. doi: 10.12659/MSM.901870.
49.    Alkhatib AJ, Ababneh SK. The impacts of cigarette smoking on rat’s trachea: a histologic study. Biomed J Sci & Tech Res 2021; 38: 30006-30010
50.    Parwanto MLE, Wratsangka R, Guyansyah A, et al. Mutation of the fas-promoter-670 gene, AA to GA in the normal cervix-epithelial-cells of high risk Indonesian mother: A case report. Bali Med J 2019; 8: 360-364. DOI: https://doi.org/10.15562/bmj.v%25vi%25i.131.
51.    Parwanto E, Wratsangka R, Guyansyah A, et al. The change of cell biometric and its nucleus on cervical- squamous-epithelial-cell with GA genotype of Fas-promoter-670 gene, high-risk human papillomavirus and Candida species infection: a case report. Bali Med J 2021; 10: 74-81. DOI: https://doi.org/10.15562/bmj.v10i1.2138

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available