Author(s):
Padma Priya Gopalakrishnan, Girija Chamarahalli Ramakrishna Iyer
Email(s):
g.padmapriya@jainuniversity.ac.in
DOI:
10.52711/0974-360X.2025.00703
Address:
Padma Priya Gopalakrishnan1,2*, Girija Chamarahalli Ramakrishna Iyer3
1Research and Evaluation Centre Bharathiyar University, Coimbatore, India.
2Department of Chemistry and Biochemistry, Jain University Bengaluru, India.
3Department of Chemistry, SSMRV Degree College, Bangalore, India.
*Corresponding Author
Published In:
Volume - 18,
Issue - 10,
Year - 2025
ABSTRACT:
After synthesizing a Schiff base ligand, its structural, spectroscopic, and biological characteristics were thoroughly investigated. A triclinic crystal structure with a space group of P-1 was confirmed by determining the molecular structure through the use of powder X-ray diffraction and a simulated annealing method. Its molar conductivity value of 16 ??¹ cm² mol?¹ demonstrated that the ligand was non-electrolytic. FTIR and ¹H NMR spectroscopic investigations confirmed the structural properties of the ligand. Notably, symmetric stretching vibrations of ?(NH) were responsible for bands in the FTIR spectrum in the region of ~1370–1390 cm?¹ and a high-intensity band at 1725–1740 cm?¹.Using the diffusion method, antibacterial activity against Pseudomonas aeruginosa, Escherichia coli, and Bacillus cereus were assessed. At 400 µg, the ligand showed considerable action, but at 100 µg, there was no inhibition evident. Strong binding affinity to the DNA region was shown by a binding energy of -7.5 kcal/mol found in molecular docking tests with DNA (PDB ID: 1HQ7). These results point to the Schiff base ligand's encouraging potential for use in biological processes.
Cite this article:
Padma Priya Gopalakrishnan, Girija Chamarahalli Ramakrishna Iyer. Study on Biological Activities of Alloxan Derived Schiff Base Ligand. Research Journal of Pharmacy and Technology. 2025;18(10):4877-1. doi: 10.52711/0974-360X.2025.00703
Cite(Electronic):
Padma Priya Gopalakrishnan, Girija Chamarahalli Ramakrishna Iyer. Study on Biological Activities of Alloxan Derived Schiff Base Ligand. Research Journal of Pharmacy and Technology. 2025;18(10):4877-1. doi: 10.52711/0974-360X.2025.00703 Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-10-42
7. REFERENCES:
1. Beraldo H.Gambino D.The wide pharmacological versatility of semicarbazones, thiosemicarbazones and their metal complexes. Mini Reviews in Medicinal Chemistry. 2004; 4(1): 31-39. doi: 10.2174/1389557043487484
2. Bojarski J. T. Mokrosz J. L. Bartoń H. J.Paluchowska M. H. (). Recent progress in barbituric acid chemistry. Advances in heterocyclic chemistry. 1985; 38: 229-297. doi:10.1016/S0065-2725(08)60921-6
3. Champion G.D. Graham G.G. ZieglerJ.B. The gold complexes. Baillière's Clinicalrheumatology. 1990; 4(3): 491-534. doi:10.1016/s09503579(05)80005-6
4. Shebaldina L. S. Kovalchukova O. V. Strashnova S. B. Zaitsev B. E. IvanovaT. M. Synthesis and Physicochemical Properties of d-and f-Metal Complexes with Alloxan. Russian Journal of Coordination Chemistry. 2004; 30: 38-42. doi.org/10.1023/B:RUCO.0000011641.13455.ab
5. Refat M.S. El-Korashy S.A. Kumar D.N. AhmedA S.Spectral and thermal studies of alloxan complexes. Journal of Coordination Chemistry. 2008; 61(12): 1935-1950. doi:10.1080/00958970701793636
6. Nuwan De Silva N. W. S. V. Lisic E. C. Albu T. V. Hybrid density functional theory investigation of a series of alloxan-based thiosemicarbazones and semicarbazones. Central European Journal of Chemistry. 2006; 4: 646-665. doi.org/10.2478/s11532-006-0033-1
7. Mahapatra B.B.Panda D.Pujari S. K. Cobalt (II), copper (II), cadmium (II) and mercury (II) complexes with a tetradentate ONNO donor Schiff base. Transition Metal Chemistry. 1983; 8(2): 119-121. doi.org/10.1007/BF01036095
8. Jayabalakrishnan C. Karvembu R.Natarajan K. Synthesis, characterisation, catalytic, and biocidal studies of ruthenium (III) complexes withthiosemicarbazones of β-diketoesters. Synthesis and reactivity in inorganic and metal-organic chemistry. 2002; 32(6): 1099-1113. doi.org/10.1081/SIM-120013023
9. Salah Eddine Rahmani, Mokhtar Lahrech. Evaluation of the Antioxidant Activity of some Hydrazone Schiff’s bases bearing Benzotriazole Moiety. Research J. Pharm. and Tech. 2018; 11(9): 4104-4107. doi 10.5958/0974-360X.2018.00754.0
10. Abdul Kareem Hamad Ayfan, Rasim Farraj Muslim, Noor Sabah Noori. Preparation and Characterization of Novel disubstituted 1,3- Oxazepine-tetra-one from Schiff bases reaction with 3-methylfuran-2,5-dione and 3-Phenyldihydrofuran-2,5-dione. Research J. Pharm. and Tech. 2019; 12(3): 1008-1016. doi: 10.5958/0974-360X.2019.00167.7
11. Ram Vishun Prasad, Ashutosh Singh. Synthesis, Characterization, Antibacterial and Antifungal study of Novel Co (II) metal complexes of bidentate 3-Formylchromone based Schiff bases. Asian Journal of Pharmaceutical Research. 2022; 12(3): 203-6. doi: 10.52711/2231-5691.2022.00033
12. Krishna V.Prabhakara CharyaD. Synthesis and Characterization of Zn (II), Cu (II), Ni (II) and Co(II), Biphenyl Schiff base Complexes. Asian J. Research Chem 8(5): May 257-261. doi: 10.5958/0974-4150.2015.00044.9
13. Roopa.H.R. Saravanan. J. Mohan.S, Rekha Parmesh. Synthesis, Characterization of Some Novel Heterofused Thienopyrimidines for Anti-Inflammatory Activity. Asian J. Research Chem. 2015; 8(3): 170-174. doi: 10.5958/0974-4150.2015.00030.9
14. Aarushi Jain, Sheela Valecha. Synthesis and Characterization of Ni(II), Co(II), Cr(III) and Mn(II) complexes of Schiff Base derived from 4-Benzoyl-3-methyl-1-phenylpyrazol-5-one and 4,4’-Oxydianiline. Asian J. Research Chem. 2015; 8(10): 651-654. doi: 10.5958/0974-4150.2015.00104.2
15. Mahmood-ul-Hassan, ChohanZ. H. Supuran C. T. Antibacterial Co (II) and Ni (II) complexes of benzothiazole-derived Schiff bases. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry. 2002; 32(8): 1445-1461. doi.org/10.1081/SIM-120014861
16. Dhanaraju. M.D. Gopi.C, Girija Sastry V.. Synthesis and Biological Evaluation of Some 4-(5((1h-Benzo [D][1,2,3]Triazol-1-Yl)Methyl)-1,3,4-Oxadiazol-2yl)-N-Benzylidenebenamine Derivative as a Anti-Microbial and Anti-Convulsant Agents. Asian J. Research Chem. 2015; 8(7): 459-464. doi: 10.5958/0974-4150.2015.00075.9
17. Udaysinha Patil, Mustapha Mandewale, Bapu Thorat, Aarti Nagarsekar, Ramesh Yamgar. Transition Metal Tetrahydro-Salophen Type Complexes: Synthesis, Characterization and Antitubercular Studies. Asian J. Research Chem. 2016; 9(9): 425-434. doi: 10.5958/0974-4150.2016.00064.X
18. Y. Pradeep Kumar, S. Chand Basha, K. Anusha, K. Madhuri, C. Gopinath. Synthesis, Characterization of 3-Chloro 4-(4- Substituted Phenyl -1- (4- Nitro Phenylazetidin -2-one by Microwave Method and Evaluation of Their Antibacterial Activity. Asian J. Research Chem. 2016; 9(3): 101-106. doi 10.5958/0974-4150.2016.00018.3
19. Bonev B.Hooper J. ParisotJ. Principles of assessing bacterial susceptibility to antibiotics using the agar diffusion method. Journal of Antimicrobial Chemotherapy. 2008; 61(6): 1295-1301. doi: 10.1093/jac/dkn090
20. Trott O. Olson A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry. 2010; 31(2): 455-461. doi: 10.1002/jcc.21334
21. Sevinçli.Z. Ş. Duran G. N.Özbi̇L.M.Karalı.N. Synthesis, molecular modeling and antiviral activity of novel 5-fluoro-1H-indole-2,3-dione 3-thiosemicarbazones. Bioorganic Chemistry. 2010; 104: 104202. doi.org/10.1016/j.bioorg.2020.104202