Author(s): Viraj Vivek Gaonkar, Sonam Shrirang Shinde, Humaira Mushtaq Mukadam, Firdaus Alimuddin Sayyed, Kunal Sanjay Sasane, Shikha Vikrant Gaikwad

Email(s): drshikhagaikwad@gmail.com

DOI: 10.52711/0974-360X.2025.00700   

Address: Viraj Vivek Gaonkar, Sonam Shrirang Shinde, Humaira Mushtaq Mukadam, Firdaus Alimuddin Sayyed, Kunal Sanjay Sasane, Shikha Vikrant Gaikwad*
Department of Biosciences and Technology, School of Sciences and Environmental Studies, Faculty of Sciences and Health Sciences, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra, India.
*Corresponding Author

Published In:   Volume - 18,      Issue - 10,     Year - 2025


ABSTRACT:
Melanin pigment has diverse chemical and biological functions, that makes this molecule vital for potential applications in various fields. Microbial synthesis of melanin offers numerous advantages over chemical methods, including sustainability and cost-effectiveness. In the presented study, Bacillus proteolyticus MITWPUME1, an isolate of the Mimosa pudica plant’s rhizospheric zone was found to be a potential producer of melanin, yielding 355 g/L with L-tyrosine supplemented media. Extracted melanin exhibited its peak absorption at wavelength 220 nm. The FTIR peaks’ spectrum confirmed the presence of biomolecule-melanin. The biomolecule showed solubility in sodium hydroxide, ammonium hydroxide, and chloroform, while found to be insoluble in water, ethanol, and methanol. It shows precipitation with hydrochloric acid and decolorization with hydrogen peroxide. On the other hand, it showed stability across a broad range of pH and temperature, indicating its compatibility with a diverse range of industrial applications. The Sun Protective Factor (SPF) was found to be 6.15 and antioxidant activity 18.95%. These two important properties highlight the applicability of the biomolecule-melanin in the field of cosmetics. Thus, Bacillus proteolyticus MITWPUME1 emerges as a promising candidate for melanin producer with desired physicochemical properties, holding promise for other diverse agricultural, and biomedical applications.


Cite this article:
Viraj Vivek Gaonkar, Sonam Shrirang Shinde, Humaira Mushtaq Mukadam, Firdaus Alimuddin Sayyed, Kunal Sanjay Sasane, Shikha Vikrant Gaikwad. Microbial Synthesis of Melanin by Bacillus proteolyticus MITWPUME1: Isolation, Characterization, and Potential Application. Research Journal of Pharmacy and Technology. 2025;18(10):4857-4. doi: 10.52711/0974-360X.2025.00700

Cite(Electronic):
Viraj Vivek Gaonkar, Sonam Shrirang Shinde, Humaira Mushtaq Mukadam, Firdaus Alimuddin Sayyed, Kunal Sanjay Sasane, Shikha Vikrant Gaikwad. Microbial Synthesis of Melanin by Bacillus proteolyticus MITWPUME1: Isolation, Characterization, and Potential Application. Research Journal of Pharmacy and Technology. 2025;18(10):4857-4. doi: 10.52711/0974-360X.2025.00700   Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-10-39


REFERENCES:
1.    Hiral S. Popaniya, Payal N. Vaja, Chintankumar J. Tank. Tyrosinase Inhibition: A Potent Mechanism of Action of Plants used in Treatment of Melasma. Asian Journal of Pharmaceutical Research. 2024; 14(3): 289-4. doi: 10.52711/2231-5691.2024.00045). 
2.    Deni Firmansyah, Sulistiorini Indriaty, Sri Adi Sumiwi, Nyi Mekar Saptarini, Jutti Levita. Microphthalmia Transcription Factor almost Thirty Years after: Its Role in Melanogenesis and its Plant-Derived Inhibitors. Research Journal of Pharmacy and Technology. 2022; 15(6): 2825-0. doi: 10.52711/0974-360X.2022.00472
3.    Yoo Jin Ha, Ji Joong Gu, Sun Kyun Yoo. Characterization of Melanin Isolated and purified by Multi –Stage Enzymatic Reaction from Korean Whole Black Fowl (Gallus gallus domesticus). Research Journal of Pharmacy and Technology 2018; 11(11): 4821-4824. doi: 10.5958/0974-360X.2018.00876.4
4.    Solano F. Photoprotection and skin pigmentation: Melanin-related molecules and some other new agents obtained from natural sources. Molecules. 2020; 25(7): 1537. doi: 10.3390/molecules25071537
5.    Liu H, Yang Y, Liu Y, Pan J, Wang J, Man F, Zhang W, Liu G. Melanin‐like nanomaterials for advanced biomedical applications: a versatile platform with extraordinary promise. Advanced Science. 2020; 7(7): 1903129. doi:10.1002/advs.201903129
6.    Di Capua R, Gargiulo V, Alfè M, De Luca GM, Skála T, Mali G, Pezzella A. Eumelanin graphene-like integration: The impact on physical properties and electrical conductivity. Frontiers in Chemistry. 2019; 7:121. doi: 10.3389/fchem.2019.00121
7.    Yang L, Guo X, Jin Z, Guo W, Duan G, Liu X, Li Y. Emergence of melanin-inspired supercapacitors. Nano Today. 2021; 37: 101075. doi:10.1016/j.nantod.2020.101075
8.    Thaira, H, Raval K, Manirethan V, Balakrishnan RM. Melanin nano-pigments for heavy metal remediation from water. Separation Science and Technology. 2019; 54(2): 265-74. doi:10.1080/01496395.2018.1443132
9.    El-Naggar NE, Saber WI. Natural melanin: current trends, and future approaches, with especial reference to microbial source. Polymers. 2022; 14(7): 1339. doi:10.3390/polym14071339 
10.    Shi A, Fan F, Broach JR. Microbial adaptive evolution. Journal of Industrial Microbiology and Biotechnology. 2022; 49(2): kuab076. doi: 10.1093/jimb/kuab076.
11.    Bolognese F, Scanferla C, Caruso E, Orlandi VT. Bacterial melanin production by heterologous expression of 4‑hydroxyphenylpyruvate dioxygenase from Pseudomonas aeruginosa. International Journal of Biological Macromolecules. 2019; 133: 1072-80. doi:10.1016/j.ijbiomac.2019.04.061.
12.    Seo D, Choi KY. Heterologous production of pyomelanin biopolymer using 4-hydroxyphenylpyruvate dioxygenase isolated from Ralstonia pickettii in Escherichia coli. Biochemical Engineering Journal. 2020; 157: 107548. doi:10.1016/j.bej.2020.107548
13.    Choi KY. Bioprocess of microbial melanin production and isolation. Frontiers in Bioengineering and Biotechnology. 2021; Nov 16; 9: 765110. doi: 10.3389/fbioe.2021.765110
14.    Tsouko E, Tolia E, Sarris D. Microbial Melanin: Renewable Feedstock and Emerging Applications in Food-Related Systems. Sustainability. 2023; 15(9): 1-20. doi:10.3390/su15097516
15.    P. Muthukumaran, P. Shanmuganathan , C. Malathi. In Vitro Antioxidant Evaluation of Mimosa pudica. Asian J. Pharm. Res. 2011; 1(2): 44-46.
16.    Gaikwad, S, Sapre V. Structural and functional diversity of rhizobacterial strains isolated from rhizospheric zone of different plants of Sholapur-Maharashtra Region, India. International Journal of Current Microbiology and Applied Sciences. 2015; 4: 263-73. 
17.    Fierer N, Lef2015; 4:26333333s BJ, Nielsen UN, Bates ST, Lauber CL, Owens S, Gilbert JA, Wall DH, Caporaso JG. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proceedings of the National Academy of Sciences. 2012; Dec 26; 109(52): 21390-5. doi: 10.1073/pnas.1215210110.
18.    Rashid MI, Mujawar LH, Shahzad T, Almeelbi T, Ismail IM, Oves M. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiological Research. 2016; 183: 26-41. doi: 10.1016/j.micres.2015.11.007.
19.    Dar ZA, Bhat RA, Bhat JI, Mir SA, Amin A, Rashid A, Rifat B, Lone R. Microbial Diversity and Their Role in Plant and Soil Health Under Stress Conditions. In vitro Plant Breeding towards Novel Agronomic Traits: Biotic and Abiotic Stress Tolerance. 2019: 149-66. doi:10.1007/978-981-32-9824-8_9
20.    Pavan ME, López NI, Pettinari MJ. Melanin biosynthesis in bacteria, regulation and production perspectives. Applied Microbiology and Biotechnology. 2020; 104(4): 1357-70. doi:10.1007/s00253-019-10245-y
21.    Muñoz-Torres P, Cárdenas-Ninasivincha S, Aguilar Y. Exploring the Agricultural Applications of Microbial Melanin. Microorganisms. 2024; 12(7): 1352. Doi: 10.3390/microorganisms12071352 
22.    Rudrappa M, Kumar S, Kumar RS, Almansour AI, Perumal K, Nayaka S. Bioproduction, purification and physicochemical characterization of melanin from Streptomyces sp. strain MR28. Microbiological Research. 2022; 263: 127130. doi: 10.1016/j.micres.2022.127130
23.    Mukadam, Humaira, Shikha V. Gaikwad, Nithya N. Kutty, and Vikrant D. Gaikwad. Bioformulation of Bacillus proteolyticus MITWPUB1 and its biosurfactant to control the growth of phytopathogen Sclerotium rolfsii for the crop Brassica juncea var local, as a sustainable approach. Frontiers in Bioengineering and Biotechnology. 12 (2024): 1362679. doi: 10.3389/fbioe.2024.1362679
24.    Eskandari S, Etemadifar Z. Melanin biopolymers from newly isolated Pseudomonas koreensis strain UIS 19 with potential for cosmetics application, and optimization on molasses waste medium. Journal of Applied Microbiology. 2021; 131(3): 1331-43. doi: 10.1111/jam.15046.
25.    Chakrabarty S, Patel S. Isolation of melanin pigment producing bacteria from marine water and study of photoprotective role of the pigment. International Journal of Innovative Research in Science, Engineering and Technology. 2018; 7(9): 9341-50.
26.    Singh S, Nimse SB, Mathew DE, Dhimmar A, Sahastrabudhe H, Gajjar A, Ghadge VA, Kumar P, Shinde PB. Microbial melanin: Recent advances in biosynthesis, extraction, characterization, and applications. Biotechnology Advances. 2021; 53: 107773. doi: 10.1016/j.biotechadv.2021.107773
27.    Kiran GS, Jackson SA, Priyadharsini S, Dobson AD, Selvin J. Synthesis of Nm-PHB (nanomelanin-polyhydroxy butyrate) nanocomposite film and its protective effect against biofilm-forming multi drug resistant Staphylococcus aureus. Scientific reports. 2017; 7(1): 9167. doi:10.1038/s41598-017-08816-y
28.    Fu X, Xie M, Lu M, Shi L, Shi T, Yu M. Characterization of the physicochemical properties, antioxidant activity, and antiproliferative activity of natural melanin from S. reiliana. Scientific Reports. 2022; 12(1): 2110. doi: 10.1038/s41598-022-05676-z
29.    N. Lavanya, Varshith Kumar G, Thesis. S, B. Somshekar. Simultaneous Determination and comparison of Sun Protection Factor [SPF] of various merchandised sunscreen formulations by using UV spectrophotometer. Asian Journal of Pharmaceutical Analysis. 2022; 12(2): 111-4. doi: 10.52711/2231-5675.2022.00020
30.    Masheer Ahmed Khan, Gajanand Engla. Comparative studies on sun protection factor of some sunscreen formulations used in cosmetics. Res. J. Topical and Cosmetic Sci. 2012; 3(1): 34-36
31.    Krishna Kondragunta. V, Karuppuraj. V, Perumal. K. Antioxidant activity and Folic acid content in indigenous isolates of Ganoderma lucidum. Asian J. Pharm. Ana. 2016; 6(4): 213-215
32.    Ankita Chatterjee, Soumya Nair, Jayanthi Abraham. Drug Resistance of Bacterial Isolates from Hospital Sewage Soil Sample. Research J. Pharm. and Tech. 2018; 11(7): 2901-2905
33.    Prerana Venkatachalam, Varalakshmi Kilingar Nadumane. Enhanced Production of an Anti-Cancer Pigment from Bacillus endophyticus JUPR15: Single Factor System Vs RSM. Research J. Pharm. and Tech. 2021; 14(1): 153-161. doi: 10.5958/0974-360X.2021.00027.5
34.    Chen Y, Deng Y, Wang J, Cai J, Ren G. Characterization of melanin produced by a wild-type strain of Bacillus thuringiensis. The Journal of General and Applied Microbiology. 2004; 50(4): 183-8. doi: 10.2323/jgam.50.183
35.    Pralea IE, Moldovan RC, Petrache AM, Ilieș M, Hegheș SC, Ielciu I, Nicoară R, Moldovan M, Ene M, Radu M, Uifălean A. From extraction to advanced analytical methods: The challenges of melanin analysis. International Journal of Molecular Sciences. 2019; 20(16): 3943. doi: 10.3390/ijms20163943
36.    Ammanagi A, CT S, Badiger A, Ramaraj V. Functional and structural characterization of melanin from Brevibacillus invocatus strain IBA. InDoklady Biological Sciences 2021 Sep (Vol. 500, pp. 159-169). Pleiades Publishing. doi: 10.1134/S001249662105001X
37.    Mekala LP, Mohammed M, Chinthalapati S, Chinthalapati VR. Pyomelanin production: Insights into the incomplete aerobic l-phenylalanine catabolism of a photosynthetic bacterium, Rubrivivax benzoatilyticus JA2. International Journal of Biological Macromolecules. 2019; 126: 755-64. doi: 10.1016/j.ijbiomac.2018.12.142
38.    Ghadge V, Kumar P, Singh S, Mathew DE, Bhattacharya S, Nimse SB, Shinde PB. Natural melanin produced by the endophytic Bacillus subtilis 4NP-BL associated with the halophyte Salicornia brachiata. Journal of Agricultural and Food Chemistry. 2020; 68(25): 6854-63. doi: 10.1021/acs.jafc.0c01997.
39.    Madhusudhan DN, Mazhari BB, Dastager SG, Agsar D. Production and cytotoxicity of extracellular insoluble and droplets of soluble melanin by Streptomyces lusitanus DMZ-3. BioMed Research International. 2014; 2014. doi: 10.1155/2014/306895
40.    Rudrappa M, Kumar RS, Basavarajappa DS, Bhat MP, Nagaraja SK, Almansour AI, Perumal K, Nayaka S. Penicillium citrinum NP4 mediated production, extraction, physicochemical characterization of the melanin, and its anticancer, apoptotic, photoprotection properties. International Journal of Biological Macromolecules. 2023; 245: 125547. doi: 10.1016/j.ijbiomac.2023.125547
41.    Xin C, Ma JH, Tan CJ, Yang Z, Ye F, Long C, Ye S, Hou DB. Preparation of melanin from Catharsius molossus L. and preliminary study on its chemical structure. Journal of Bioscience and Bioengineering. 2015; 119(4): 446-54. doi: 10.1016/j.jbiosc.2014.09.009
42.    El-Naggar NE, El-Ewasy SM. Bioproduction, characterization, anticancer and antioxidant activities of extracellular melanin pigment produced by newly isolated microbial cell factories Streptomyces glaucescens NEAE-H. Scientific reports. 2017; Feb 14; 7(1): 1-9. doi: 10.1038/srep42129
43.    Wang LF, Rhim JW. Isolation and characterization of melanin from black garlic and sepia ink. Food and Science Technology. 2019; Jan 1; 99: 17-23. doi:10.1016/j.lwt.2018.09.033
44.    Liu Q, Xiao J, Liu B, Zhuang Y, Sun L. Study on the preparation and chemical structure characterization of melanin from Boletus griseus. International Journal of Molecular Sciences. 2018 Nov 23; 19(12): 3736. doi: 10.3390/ijms19123736
45.    Noman AE, Al-Barha NS, Chen F. Characterization of Physicochemical Properties of Melanin Produced by Gluconobacter oxydans FBFS 97. Fermentation. 2022; Oct 23; 8(11): 574. doi: 10.3390/fermentation8110574 
46.    Kamarudheen N, Naushad T, Rao KV. Biosynthesis, characterization and antagonistic applications of extracellular melanin pigment from marine Nocardiopsis Sps. Indian Journal of Pharmaceutical Education Research. 2019; 53(2): 112-20. doi: 10.5530/ijper.53.2s.55
47.    Caldas M, Santos AC, Veiga F, Rebelo R, Reis RL, Correlo VM. Melanin nanoparticles as a promising tool for biomedical applications–a review. Acta Biomaterialia. 2020; Mar 15; 105: 26-43. doi: 10.1016/j.actbio.2020.01.044
48.    Guo L, Li W, Gu Z, Wang L, Guo L, Ma S, Li C, Sun J, Han B, Chang J. Recent advances and progress on melanin: From source to application. International Journal of Molecular Sciences. 2023; Feb 22; 24(5): 4360. doi: 10.3390/ijms24054360
49.    Gómez-Marín AM, Sánchez CI. Thermal and mass spectroscopic characterization of a sulphur-containing bacterial melanin from Bacillus subtilis. Journal of non-crystalline solids. 2010; Jul 1; 356(31-32): 1576-80. doi:10.1016/j.jnoncrysol.2010.05.054 
50.    P. Prapulla. A Review on: Vitiligo- A Non Contagious Chronic Disease different Types and Treatments. Asian J. Research Chem. 2019; 12(2): 120-125. doi: 10.5958/0974-4150.2019.00026.9
51.    Brenner M, Hearing VJ. The protective role of melanin against UV damage in human skin. Photochemistry and Photobiology. 2008; 84(3): 539-49. doi: 10.1111/j.1751-1097.2007.00226.x
52.    Andi Akbar, Herlina Rasyid, Hasnah Natsir, Bahrun, Nunuk Hariani Soekamto. Tyrosinase Inhibitory Activity of n-Hexane, Ethyl Acetate and Methanol Extracts of Padina sp. Research Journal of Pharmacy and Technology. 2024; 17(3): 1173-0. doi: 10.52711/0974-360X.2024.00182
53.    Bhaskar N, Sudeepa ES, Rashmi HN, Selvi AT. Partial purification and characterization of protease of Bacillus proteolyticus CFR3001 isolated from fish processing waste and its antibacterial activities. Bioresource Technology. 2007; 98(14): 2758-64. doi: 10.1016/j.biortech.2006.09.033
54.    Yang P, Zhao Z, Fan J, Liang Y, Bernier MC, Gao Y, Zhao L, Opiyo SO, Xia Y. Bacillus proteolyticus OSUB18 triggers induced systemic resistance against bacterial and fungal pathogens in Arabidopsis. Frontiers in Plant Science. 2023; 14: 1078100. doi: 10.3389/fpls.2023.1078100
55.    Akpor OB, Ezekudo EO, Sobajo OA, Edoh PA and Mabayoje SO. Optimization and antimicrobial properties of biosurfactant production by four indigenous soil bacterial species. Asian Journal of Agriculture Biotechnology. 2023; 4: 146. doi: 10.35495/ajab.2022.146



Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available