Author(s):
Mukti Priastomo, Amirah Adlia, Rohayati, Valentina Lumbantobing, Wahyu Widayat, Samsul Bahri, I Ketut Adnyana
Email(s):
samsul.bahri@itb.ac.id
DOI:
10.52711/0974-360X.2025.00699
Address:
Mukti Priastomo1, Amirah Adlia2, Rohayati3, Valentina Lumbantobing4, Wahyu Widayat1, Samsul Bahri5*, I Ketut Adnyana6
¹Department of Pharmacology, Faculty of Pharmacy, Universitas Mulawarman, Indonesia.
²Department of Pharmaceutical Science, School of Pharmacy, Institut Teknologi Bandung, Indonesia.
3Departement of Medical Laboratory Technology, Politeknik Kesehatan Kementerian Kesehatan, Bandung, Indonesia.
4Departement of Fundamental Nursing, Faculty of Nursing, Universitas Padjadjaran, Bandung, Indonesia.
5Department of Sport Pharmacy, School of Pharmacy, Institut Teknologi Bandung, Indonesia.
6Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung, Indonesia.
*Corresponding Author
Published In:
Volume - 18,
Issue - 10,
Year - 2025
ABSTRACT:
Indonesia is one of the leading watermelon-producing countries in Asia, with cultivation spread across various regions. A significant portion of the watermelon, particularly the rind (80%), is not consumed, leading to an increase in organic waste. The rind contains the amino acids citrulline and arginine, which are known to have health benefits. This study aims to determine the levels of citrulline and arginine in watermelon rinds sourced from various regions in Indonesia. Furthermore, the research investigates the potential of citrulline and arginine in silico against inflammatory receptors using the Autodock version 4.0 application. The ADME profile and toxicity potential were also assessed computationally using the preADMET application. The analysis of citrulline and arginine levels in watermelon rind showed that citrulline (average: 63.31 mg/g DW) was predominantly found in both the green and white portions of the rind. The highest concentration of citrulline was observed in the white rind (average: 107.43 mg/g DW). Among the various sources, the white rind from Sragen had the highest citrulline content (154.97 mg/g DW). In silico evaluation of the pharmacological potential against inflammatory receptors demonstrated that citrulline and arginine have binding free energies (?G) of -5.81 kcal/mol and -5.07 kcal/mol, respectively, towards IL-6. IL-6 is known to regulate energy, support anti-inflammatory responses, and play a role in the body’s adaptation to exercise. However, elevated IL-6 levels, especially in chronic inflammatory contexts, can trigger fatigue and reduce athletic performance. Citrulline and arginine were predominantly found to accumulate in the white rind of watermelons, particularly those sourced from Sragen. In silico analysis indicated that both amino acids have the potential to inhibit IL-6 activity.
Cite this article:
Mukti Priastomo, Amirah Adlia, Rohayati, Valentina Lumbantobing, Wahyu Widayat, Samsul Bahri, I Ketut Adnyana. Citrulline and Arginine Quantification in Watermelon Rind and Anti-Inflammatory Potential Using In Silico Analysis. Research Journal of Pharmacy and Technology. 2025;18(10):4849-6. doi: 10.52711/0974-360X.2025.00699
Cite(Electronic):
Mukti Priastomo, Amirah Adlia, Rohayati, Valentina Lumbantobing, Wahyu Widayat, Samsul Bahri, I Ketut Adnyana. Citrulline and Arginine Quantification in Watermelon Rind and Anti-Inflammatory Potential Using In Silico Analysis. Research Journal of Pharmacy and Technology. 2025;18(10):4849-6. doi: 10.52711/0974-360X.2025.00699 Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-10-38
REFERENCES:
1. Abukhodair AW. Abukhudair W. Alqarni MS. The Effects of L-Arginine in Hypertensive Patients: A Literature Review. Cureus. 2021; 13(12): e20485. doi: 10.7759/cureus.20485. eCollection 2021 Dec.
2. Takeda K. Machida M. Kohara A. Omi N. Takemasa T. Effects of Citrulline Supplementation on Fatigue and Exercise Performance in Mice. J Nutr Sci Vitaminol. 2011; 57(3): 246-50. doi: 10.3177/jnsv.57.246.
3. Ermawati, Ahyar A. Sartini S. Yanti L. Harningsih K. Muhammad TD. Potential of Watermelon waste in several Pharmaceutical preparations in Global Medicine: A Review. Research Journal of Pharmacy and Technology. 2024; 17(13): 5113–5118. DOI: 10.52711/0974-360X.2024.00785
4. Rimando AM. Perkins-Veazie PM. Determination of citrulline in watermelon rind. Journal of Chromatography A. 2005; 1078(1-2):196-200. doi: 10.1016/j.chroma.2005.05.009..
5. Louati K. Berenbaum F. Fatigue in chronic inflammation - a link to pain pathways. Arthritis Res Ther. 2015; 17(254). doi: 10.1186/s13075-015-0784-1.
6. James E. Sundaram S. Renjitham. Depression and Fatigue in Rheumatoid Arthritis- A Study in Southern India. Research Journal of Pharmacy and Technology. 2023; 16(3); 1175–1179. DOI: 10.52711/0974-360X.2023.00195
7. Wu JM. Yang, HT. Ho TW. Shun SC. Lin MT. Association between Interleukin-6 Levels and Perioperative Fatigue in Gastric Adenocarcinoma Patients. Journal of Clinical Medicine. 2019; 8(4): 543. doi: 10.3390/jcm8040543.
8. Prajwal G. Madeleine H. Wei ZC. Murielle K. Lin KO. Michael N. Frederick RW. Exploring the relationship between fatigue and circulating levels of the pro-inflammatory biomarkers interleukin-6 and C-reactive protein in the chronic stage of stroke recovery: A cross-sectional study. Brain, Behavior, and Immunity - Health. 2020: 9: 100157. doi: 10.1016/j.bbih.2020.100157. eCollection 2020 Dec.
9. Grygiel-Górniak B. and Puszczewicz M. Fatigue and interleukin-6 – a multi-faceted relationship. Reumatologia. 2015 Sep 21; 53(4): 207–212. doi: 10.5114/reum.2015.53998.
10. Mir MA. Muhammad WA. and Singh P. Phytochemical isolation and Anti-inflammatory properties of various extracts of Lilium polyphyllum. Research Journal of Pharmacy and Technology. 2021; 14(6); 3195–3201. doi:10.52711/0974-360X.2021.00557.
11. Johnson JB. Ohri B. Walsh KB. and Naiker MA Simple Isocratic HPLC–UV Method for the Simultaneous Determination of Citrulline and Arginine in Australian Cucurbits and Other Fruits. Food Anal. Methods. 2022; 15; 104–114. https://doi.org/10.1007/s12161-021-02110-4
12. Debleena P. Gaurav S. Snehal S. Dnyaneshwar K. Kiran K. Rakesh KT. Artificial intelligence in drug discovery and development. Drug Discovery Today. 2020; 26(1): 80–93. doi: 10.1016/j.drudis.2020.10.010
13. Guengerich FP. Inhibition of Cytochrome P450 Enzymes by Drugs-Molecular Basis and Practical Applications. Biomol Ther (Seoul). 2022;30(1):1-18. doi: 10.4062/biomolther.2021.102.
14. Cosimo T. Claudia IC. Alberto M. Anna L. Jürgen A. Emilio B. New Models to Predict the Acute and Chronic Toxicities of Representative Species of the Main Trophic Levels of Aquatic Environments. Molecules. 2021; 26(22): 6983. doi: 10.3390/molecules26226983.
15. Jeyabaskar S. Viswanathan T. Mahendran R. Nishandhini M. In silico Molecular Docking studies to investigate interactions of natural Camptothecin molecule with diabetic enzymes. Research Journal of Pharmacy and Technology. 2017; 10(9); 2917–2922. DOI: 10.5958/0974-360X.2017.00515.7
16. Samajdar S. In silico ADME prediction of Phytochemicals present in Piper longum. Asian Journal of Research in Pharmaceutical Sciences. 2023; 13(2); 89–93. DOI: 10.52711/2231-5659.2023.00017
17. Ahmad S. Recent advances in Pharmacology and Toxicology of Phytopharmaceuticals. Asian Journal of Pharmaceutical Research. 2017; 10(9); 222–224. DOI: 10.5958/0974-360X.2017.00515.7
18. Imen T. Chafik H. Marcello SL. Ilahy R. Hager J. Giuseppe Dalessandro c Bioactive compounds and antioxidant activities of different watermelon (Citrullus lanatus (Thunb.) Mansfeld) cultivars as affected by fruit sampling area. Journal of Food Composition and Analysis. 2011; 24(3); 307–314. https://doi.org/10.1016/j.jfca.2010.06.005
19. Choudhary BR. Haldhar SM. Maheshwari SK. Bhargava R. and Sharma SK. Phytochemicals and antioxidants in watermelon (Citrullus lanatus) genotypes under hot arid region. Indian J Agri Sci. 2015; 85(3); 414–417. DOI: 10.56093/ijas.v85i3.47179
20. Shweta N. Charanjit K. Harshawardhan C. Jashbir S. Braj BS. Singh KN. Lycopene content, antioxidant capacity and colour attributes of selected watermelon (Citrullus lanatus (Thunb.) Mansfeld) cultivars grown in India. International Journal of Food Sciences and Nutrition. 2012; 63(8): 996-1000. doi: 10.3109/09637486.2012.694848. Epub 2012 Jun 20.
21. Asghar MN. Shahzad MT. Nadeem I. and Ashraf CM. Phytochemical and in vitro total antioxidant capacity analyses of peel extracts of different cultivars of Cucumis melo and Citrullus lanatus. Pharmaceutical Biology. 2013; 51(2): 226-32. doi: 10.3109/13880209.2012.717228.
22. Kumar RS. Subhashish D. Ganesh GNK. Raju L. Samantha MK. Suresh B. Chitosan Nano Particles by Ionotropic Gelation Containing L-Arginine. Research Journal of Pharmacy and Technology. 2009; 2(1); 80–85.
23. Ahamad S. Mohammad Azmin SNH. Mat Nor MS. Zamzuri NDD. and Babar M. Recent trends in preprocessing and extraction of watermelon rind extract: A comprehensive review. Food Processing Preservation. 2022; 46(7). https://doi.org/10.1111/jfpp.16711
24. Zia S. Khan MR. Aadil RM. and Medina-Meza IG. Bioactive Recovery from Watermelon Rind Waste Using Ultrasound-Assisted Extraction. Food Science and Technology. 2024; 4(3); 687-699. https://doi.org/10.21203/rs.3.rs-3568664/v1 (2023).
25. Nessma AEZ. Antioxidant, Antitumor, Antimicrobial Studies and Quantitative Phytochemical Estimation of Ethanolic Extracts of Selected Fruit Peels. International Journal of Current Microbiology and Applied Sciences. 2015; 4(5); 298-309.
26. Victoria AU. Felix KA. Min L. Zhifu C. Xiaoling Z. Hai L. Potential Implications of Citrulline and Quercetin on Gut Functioning of Monogastric Animals and Humans: A Comprehensive Review. Nutrients. 2021;13 (11): 3782. doi: 10.3390/nu13113782.
27. Pandey R. Pandey R. and Shukla S. S. Anti-inflammatory potential of ethanol extract of Rubus ulmifolius (Schott). Research Journal of Pharmacy and Technology. 2013; 6(3); 300–303.
28. Sahu R. K. Singh H. and Roy A. Antioxidative characteristics of ethanol and aqueous extracts of Curcuma amada rhizomes. Research Journal of Pharmacognosy and Phytochemistry. 2009; 1(1); 41–43.
29. Prasad P. S. H. and Ramakrishnan N. Evaluation of Nitric Oxide Scavenging Activity of Rumex vesicarius L. Asian Journal of Research in Chemistry. 2011; 4(9); 1482–1484.
30. Balakrishnan N. Panda A. B. Raj N. R. Shrivastava A. Prathani R. The Evaluation of Nitric Oxide Scavenging Activity of Acalypha Indica Linn Root. Asian Journal of Research in Chemistry. 2009; 2(2); 148–150.
31. Theodor A. Sen Z. Robert N. Christopher M. Nadav D. Martin L. Greg S. C. Anthony S. Citrulline: A potential immunomodulator in sepsis. Surgery. 2011; 150(4): 744-51. doi: 10.1016/j.surg.2011.08.024.