Author(s):
Sri Nabawiyati Nurul Makiyah, Rahmah, Ahmad Hafidul Ahkam
Email(s):
nurul.makiyah@umy.ac.id
DOI:
10.52711/0974-360X.2025.00687
Address:
Sri Nabawiyati Nurul Makiyah*, Rahmah, Ahmad Hafidul Ahkam
Faculty of Medicine and Health Science Universitas Muhammadiyah Yogyakarta, Jl. Brawijaya, Kasihan, Bantul, Yogyakarta 55183.
*Corresponding Author
Published In:
Volume - 18,
Issue - 10,
Year - 2025
ABSTRACT:
Platostoma palustre, also known as Cincau (Indonesian) or Xiancao (Chinese), is a plant that has been used and consumed as an herb. Through several previous studies, the various therapeutic potentials of P. palustre have been revealed little by little. However, research related to its use in chronic obstructive pulmonary disease (COPD) particularly in its anti-inflammation bioactivity effect is still limited. So, we conducted this research as initial research to fill a little of the information gap. The study was conducted using a list of active compounds of P. palustre from existing research, and then different expressed genes (DEG) related to COPD were obtained from the Gene Expression Omnibus dataset and evaluated for their bioactivity. Then, the active compound with the highest anti-inflammatory bioactivity potential was docked with DEG to determine its binding affinity. The result shown, that the active compounds with the highest anti-inflammatory bioactivity found in P. palustre were brassinolide, D-(+)-trehalose, leukotriene B4, linolenic acid, and diosgenin. Meanwhile, the DEGs from the COPD dataset obtained are FN1, CDH2, NOS3, DNAH9, DNAH11, CACNA1H, CACNG4, TNC, BAI1, and DNAAF1. Several active compounds have high binding affinity for FN1, CDH2, and NOS3, which are expected to induce anti-inflammatory activity through the inhibition that occurs.
Cite this article:
Sri Nabawiyati Nurul Makiyah, Rahmah, Ahmad Hafidul Ahkam. Computational Screening of Platostoma palustre Metabolites for Anti- Inflammation Bioactivity in the Chronic Obstructive Pulmonary Disease Gene Dataset. Research Journal of Pharmacy and Technology. 2025;18(10):4773-0. doi: 10.52711/0974-360X.2025.00687
Cite(Electronic):
Sri Nabawiyati Nurul Makiyah, Rahmah, Ahmad Hafidul Ahkam. Computational Screening of Platostoma palustre Metabolites for Anti- Inflammation Bioactivity in the Chronic Obstructive Pulmonary Disease Gene Dataset. Research Journal of Pharmacy and Technology. 2025;18(10):4773-0. doi: 10.52711/0974-360X.2025.00687 Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-10-26
REFERENCES:
1. Adhikari UR, Roy S. A Correlational study on quality of life and disease severity among Chronic Obstructive Pulmonary Disease (COPD) clients attending a pulmonary Medicine OPD of a Tertiary care hospital, Kolkata. Asian Journal of Nursing Education and Research. 2021; 11(4): 528-532. doi:10.52711/2349-2996.2021.00125
2. Maheshwari P, Somasundaram I. Health Related Quality of Life Measurement in Asthma and Chronic Obstructive Pulmonary Disease. Research Journal of Pharmacy and Technology. 2016; 9(5): 518-520. doi:10.5958/0974-360X.2016.00097.4
3. Czarnecka-Chrebelska KH, Mukherjee D, Maryanchik SV, Rudzinska-Radecka M. Biological and Genetic Mechanisms of COPD, Its Diagnosis, Treatment, and Relationship with Lung Cancer. Biomedicines. 2023; 11(2): 448. doi:10.3390/biomedicines11020448
4. Chanda C. Role of Inflammatory Cytokines during Lung Cancer Progression: A Review. Research Journal of Pharmacy and Technology. 2018; 11(11): 5163-5165. doi:10.5958/0974-360X.2018.00943.5
5. Kousalya K, Priya T, Venkatalakshmi P. Studies on the Anti-inflammatory potential of selected medicinal plants in vitro. Research Journal of Pharmacy and Technology. 2020; 13(7): 3147-3150. doi:10.5958/0974- 360X.2020.00556.9
6. Muthusamy P, Nivedhitha M, Jayshree N. Analgesic and Anti-Inflammatory Activities of Datura metel Linn. Root in Experimental Animal Models. Research Journal of Pharmacy and Technology. 2010; 3(3): 897-899.
7. Tang D, Lin Y, Wei F, et al. Characteristics and comparative analysis of Mesona chinensis Benth chloroplast genome reveals DNA barcode regions for species identification. Funct Integr Genomics. 2022; 22(4): 467-479. doi:10.1007/s10142-022-00846-8
8. Adisakwattana S, Thilavech T, Chusak C. Mesona Chinensis Benth extract prevents AGE formation and protein oxidation against fructose-induced protein glycation in vitro. BMC Complementary and Alternative Medicine. 2014; 14(1): 130. doi:10.1186/1472-6882-14-130
9. Xiao L, Lu X, Yang H, et al. The Antioxidant and Hypolipidemic Effects of Mesona Chinensis Benth Extracts. Molecules. 2022; 27(11): 3423. doi:10.3390/molecules27113423
10. Praveena A, Sanjayan KP. A Bioinformatics Approach Reveals the Insecticidal Property of Morinda tinctoria Roxb. against the Cotton Bollworm Helicoverpa armigra. Research Journal of Pharmacy and Technology. 2016; 9(11): 1829-1834. doi:10.5958/0974-360X.2016.00372.3
11. Fadholly A, Ansori ANM, Kharisma VD, Rahmahani J, Tacharina MR. Immunobioinformatics of Rabies Virus in Various Countries of Asia: Glycoprotein Gene. Research Journal of Pharmacy and Technology. 2021; 14(2): 883-886. doi:10.5958/0974-360X.2021.00157.8
12. Suhargo L, Winarni D, Fatimah, Kharisma VD, Ansori ANM. Antidiabetic Activity of Daun Wungu (Graptophyllum pictum L. Griff) Extract via Inhibition Mechanism of TNF-α, IL-6, and IL-8: Molecular Docking and Dynamic Study. Research Journal of Pharmacy and Technology. 2023; 16(5): 2291-2296. doi:10.52711/0974-360X.2023.00376
13. Tang D, Quan C, Huang S, Wei F. Integrating LC-MS and HS-GC-MS for the metabolite characterization of the Chinese medicinal plant Platostoma palustre under different processing methods. Frontiers in Nutrition. 2023; 10. Accessed May 23, 2023. https://www.frontiersin.org/articles/10.3389/fnut.2023.1181942
14. Laskowski RA, Jabłońska J, Pravda L, Vařeková RS, Thornton JM. PDBsum: Structural summaries of PDB entries. Protein Sci. 2018; 27(1): 129-134. doi:10.1002/pro.3289
15. Filimonov DA, Lagunin AA, Gloriozova TA, et al. Prediction of the Biological Activity Spectra of Organic Compounds Using the Pass Online Web Resource. Chem Heterocycl Comp. 2014; 50(3): 444-457. doi:10.1007/s10593-014-1496-1
16. Goel RK, Singh D, Lagunin A, Poroikov V. PASS-assisted exploration of new therapeutic potential of natural products. Med Chem Res. 2011; 20(9): 1509-1514. doi:10.1007/s00044-010-9398-y
17. Liu P, Wang Y, Zhang N, et al. Comprehensive identification of RNA transcripts and construction of RNA network in chronic obstructive pulmonary disease. Respir Res. 2022; 23(1): 154. doi:10.1186/s12931-022- 02069-8
18. Chan LLY, Anderson DE, Cheng HS, et al. The establishment of COPD organoids to study host-pathogen interaction reveals enhanced viral fitness of SARS-CoV-2 in bronchi. Nat Commun. 2022; 13(1): 7635. doi:10.1038/s41467-022-35253-x
19. Wu Q, Peng Z, Zhang Y, Yang J. COACH-D: improved protein–ligand binding sites prediction with refined ligand-binding poses through molecular docking. Nucleic Acids Research. 2018; 46(W1): W438-W442. doi:10.1093/nar/gky439
20. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open chemical toolbox. Journal of Cheminformatics. 2011; 3(1): 33. doi:10.1186/1758-2946-3-33
21. Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Methods Mol Biol. 2015; 1263: 243-250. doi:10.1007/978-1-4939-2269-7_19
22. Wahyuningsih S, Dibha AF, Kharisma VD, et al. Screening of Compounds in Temu Ireng (Curcuma aeruginosa Roxb.) as Tuberculosis drug using Bioinformatics Design. Research Journal of Pharmacy and Technology. 2023; 16(10): 4875-4880. doi:10.52711/0974-360X.2023.00790
23. Dong C, Tian X, He F, et al. Integrative analysis of key candidate genes and signaling pathways in ovarian cancer by bioinformatics. J Ovarian Res. 2021; 14: 92. doi:10.1186/s13048-021-00837-6
24. Agnihotry S, Pathak RK, Singh DB, Tiwari A, Hussain I. Chapter 11 - Protein structure prediction. In: Singh DB, Pathak RK, eds. Bioinformatics. Academic Press; 2022: 177-188. doi:10.1016/B978-0-323- 89775-4.00023-7
25. Csoma B, Bikov A, Nagy L, et al. Dysregulation of the endothelial nitric oxide pathway is associated with airway inflammation in COPD. Respiratory Research. 2019; 20(1): 156. doi:10.1186/s12931-019-1133-8
26. Oh CK, Geba GP, Molfino N. Investigational therapeutics targeting the IL-4/IL-13/STAT-6 pathway for the treatment of asthma. European Respiratory Review. 2010; 19(115): 46-54. doi:10.1183/09059180.00007609
27. Ashutosh K, Phadke K, Jackson JF, Steele D. Use of nitric oxide inhalation in chronic obstructive pulmonary disease. Thorax. 2000; 55(2): 109-113. doi:10.1136/thorax.55.2.109
28. Wang H, Zhang J, Li H, et al. FN1 is a prognostic biomarker and correlated with immune infiltrates in gastric cancers. Front Oncol. 2022; 12: 918719. doi:10.3389/fonc.2022.918719
29. Wang Y, Zhao M, Zhang Y. Identification of fibronectin 1 (FN1) and complement component 3 (C3) as immune infiltration-related biomarkers for diabetic nephropathy using integrated bioinformatic analysis. Bioengineered. 2021; 12(1): 5386-5401. doi:10.1080/21655979.2021.1960766
30. László ZI, Lele Z. Flying under the radar: CDH2 (N-cadherin), an important hub molecule in neurodevelopmental and neurodegenerative diseases. Frontiers in Neuroscience. 2022;16. Accessed August 30, 2023. https://www.frontiersin.org/articles/10.3389/fnins.2022.972059
31. Martinez-Garay I. Molecular Mechanisms of Cadherin Function During Cortical Migration. Frontiers in Cell and Developmental Biology. 2020; 8. Accessed August 30, 2023. https://www.frontiersin.org/articles/10.3389/fcell.2020.588152
32. Pautz A, Li H, Kleinert H. Regulation of NOS expression in vascular diseases. FBL. 2021; 26(5): 85-101. doi:10.52586/4926
33. Zou D, Li Z, Lv F, et al. Pan-Cancer Analysis of NOS3 Identifies Its Expression and Clinical Relevance in Gastric Cancer. Frontiers in Oncology. 2021;11. Accessed August 30, 2023. https://www.frontiersin.org/articles/10.3389/fonc.2021.592761
34. Ma F, An Z, Yue Q, et al. Effects of brassinosteroids on cancer cells: A review. Journal of Biochemical and Molecular Toxicology. 2022; 36(6): e23026. doi:10.1002/jbt.23026
35. Sadava D, Kane SE. The effect of brassinolide, a plant steroid hormone, on drug resistant small-cell lung carcinoma cells. Biochemical and Biophysical Research Communications. 2017; 493(1): 783-787. doi:10.1016/j.bbrc.2017.08.094
36. Khalifeh M, Barreto GE, Sahebkar A. Trehalose as a promising therapeutic candidate for the treatment of Parkinson’s disease. Br J Pharmacol. 2019; 176(9): 1173-1189. doi:10.1111/bph.14623
37. Panigrahi T, Shivakumar S, Shetty R, et al. Trehalose augments autophagy to mitigate stress induced inflammation in human corneal cells. Ocul Surf. 2019;17(4):699-713. doi:10.1016/j.jtos.2019.08.004
38. Gong M, Duan H, Wu F, et al. Berberine Alleviates Insulin Resistance and Inflammation via Inhibiting the LTB4–BLT1 Axis. Front Pharmacol. 2021; 12: 722360. doi:10.3389/fphar.2021.722360
39. Tian W, Jiang X, Kim D, Guan T, Nicolls MR, Rockson SG. Leukotrienes in Tumor-Associated Inflammation. Front Pharmacol. 2020; 11: 1289. doi:10.3389/fphar.2020.01289
40. Karami-Mohajeri S, Mohammadinejad R, Ashrafizadeh M, Mohamadi N, Mohajeri M, Sharififar F. Diosgenin: Mechanistic Insights on its Anti-inflammatory Effects. Antiinflamm Antiallergy Agents Med Chem. 2022; 21(1): 2-9. doi:10.2174/1871523021666220328121721
41. Pauls SD, Rodway LA, Winter T, Taylor CG, Zahradka P, Aukema HM. Anti-inflammatory effects of α- linolenic acid in M1-like macrophages are associated with enhanced production of oxylipins from α- linolenic and linoleic acid. J Nutr Biochem. 2018;57:121-129. doi:10.1016/j.jnutbio.2018.03.020
42. Reifen R, Karlinsky A, Stark AH, Berkovich Z, Nyska A. α-Linolenic acid (ALA) is an anti-inflammatory agent in inflammatory bowel disease. J Nutr Biochem. 2015; 26(12): 1632-1640.doi:10.1016/j.jnutbio.2015.08.006