Author(s):
Hendera, Irfan Zamzani, Rahmawati
Email(s):
irfan.zamzani@umbjm.ac.id
DOI:
10.52711/0974-360X.2025.00682
Address:
Hendera, Irfan Zamzani*, Rahmawati
Faculty of Pharmacy, Universitas Muhammadiyah Banjarmasin, Barito Kuala, South Borneo, Indonesia.
*Corresponding Author
Published In:
Volume - 18,
Issue - 10,
Year - 2025
ABSTRACT:
This research examined the chemical profile, antioxidant properties, and molecular composition of Aquilaria malaccensis leaf and stem bark extracts sourced from South Borneo, Indonesia. Plant materials, collected in April 2024, underwent sequential maceration using hexane, ethyl acetate, and methanol. Standard methods were employed to screen for major phytochemical groups. A colorimetric approach quantified total flavonoid content (TFC), while the DPPH assay evaluated antioxidant capacity. Functional group identification utilized FTIR analysis. Additionally, gas chromatography-mass spectrometry (GCMS) provided comprehensive characterization of the extracts' volatile and semi-volatile components. Most extracts contained phenolics, flavonoids, terpenoids, and alkaloids. The leaf methanol extract exhibited the highest TFC (14.71 ±0.15mg QE/g) and most potent antioxidant activity (IC50 = 45.17±0.55µg/mL). FTIR analysis revealed various functional groups across all extracts, including alkanes, alcohols, and amines. GCMS identified several bioactive compounds, such as squalene, phytol, and various fatty acids, offering a detailed chemical profile of the extracts. The phytochemical composition and antioxidant potential of A. malaccensis from South Borneo are revealed by this comprehensive analysis. The findings highlight this plant's promise as a basis of natural biologically active compounds with potential applications in pharmaceutical and nutraceutical industries. Further research into isolating specific compounds and evaluating their therapeutic potential through in vivo studies and clinical trials is warranted.
Cite this article:
Hendera, Irfan Zamzani, Rahmawati. Phytochemical profile and Biological activities of Aquilaria malaccensis Leaf and Stem Bark Extracts: An In vitro study. Research Journal of Pharmacy and Technology. 2025;18(10):4743-1. doi: 10.52711/0974-360X.2025.00682
Cite(Electronic):
Hendera, Irfan Zamzani, Rahmawati. Phytochemical profile and Biological activities of Aquilaria malaccensis Leaf and Stem Bark Extracts: An In vitro study. Research Journal of Pharmacy and Technology. 2025;18(10):4743-1. doi: 10.52711/0974-360X.2025.00682 Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-10-21
REFERENCES:
1. Sardans J, Llusia J, Owen SM, Niinemets Ü, Peñuelas J. Screening study of leaf terpene concentration of 75 borneo rainforest plant species: Relationships with leaf elemental concentrations and morphology. Rec Nat Prod. 2015; 9(1): 19-40.
2. Naef R. The volatile and semi‐volatile constituents of agarwood, the infected heartwood of Aquilaria species: a review. Flavour Fragr J. 2011; 26(2): 73-87. doi:10.1002/ffj.2034
3. de Rezende LC, Juck DBF, David JM, et al. New flavans isolated from the leaves and stems of Cratylia mollis (Leguminosae). Phytochem Lett. 2015; 14: 165-169. doi:10.1016/j.phytol.2015.10.012
4. Yashin A, Yashin Y, Xia X, Nemzer B. Antioxidant Activity of Spices and Their Impact on Human Health: A Review. Antioxidants. 2017; 6(3): 70. doi:10.3390/antiox6030070
5. Huda AWN, Munira MAS, Fitrya SD, Salmah M. Antioxidant activity of aquilaria malaccensis (thymelaeaceae) leaves. Pharmacogn Res [Phcog Res]. 2009; 1(5): 270-273.
6. Dash M, Patra JK, Panda PP. Phytochemical and antimicrobial screening of extracts of Aquilaria agallocha Roxb. African J Biotechnol. 2008; 7(20): 3531-3534.
7. Hussain SZ, Maqbool K. GC-MS: Principle, Technique and its application in Food Science. Int J Curr Sci. 2014; 13: 116-126.
8. Khalil AS, Collins JJ. Synthetic biology: applications come of age. Nat Rev Genet. 2010; 11(5): 367-379. doi:10.1038/nrg2775
9. Gomathi D, Kalaiselvi M, Ravikumar G, Devaki K, Uma C. GC-MS analysis of bioactive compounds from the whole plant ethanolic extract of Evolvulus alsinoides (L.) L. J Food Sci Technol. 2015; 52(2): 1212-1217. doi:10.1007/s13197-013-1105-9
10. Figueiredo AC, Barroso JG, Pedro LG, Scheffer JJC. Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavour Fragr J. 2008; 23(4): 213-226. doi:10.1002/ffj.1875
11. Ministry of Health Republic of Indonesia. Farmakope Herbal Indonesia.; 2008.
12. Zamzani I, Triadisti N. Limpasu Pericarpium : an Alternative Source of Antioxidant From Borneo with Sequential Maceration Method. J Profesi Med J Kedokt dan Kesehat. 2021; 15(1). doi:10.33533/jpm.v15i1.2820
13. Farnsworth NR. Pharmaceutical sciences (Np). Science (80-). 1966;151(3712):874-875. doi:10.1126/science.151.3712.874
14. Marref SE, Benkiki N, Melakhessou MA. In vitro Antioxidant Activity, Total Phenolics and Flavonoids Contents of Gladiolus segetum Extracts. Res J Pharm Technol. 2018; 11(11): 5017. doi:10.5958/0974-360X.2018.00915.0
15. Limcharoen T, Pouyfung P, Ngamdokmai N, et al. Inhibition of α-Glucosidase and Pancreatic Lipase Properties of Mitragyna speciosa (Korth.) Havil. (Kratom) Leaves. Nutrients. 2022; 14(19). doi:10.3390/nu14193909
16. Bobo-García G, Davidov-Pardo G, Arroqui C, Vírseda P, Marín-Arroyo MR, Navarro M. Intra-laboratory validation of microplate methods for total phenolic content and antioxidant activity on polyphenolic extracts, and comparison with conventional spectrophotometric methods. J Sci Food Agric. 2015;95(1):204-209. doi:10.1002/jsfa.6706
17. AL-Azawi AH, Salih WY, Hassan ZH. Phytochemical and Antioxidant Activity of ( Arachis hypogaea L.) Skin Extract Scultiv Atedin Iraq. Res J Pharm Technol. 2017; 10(11): 3721. doi:10.5958/0974-360X.2017.00675.8
18. Samydurai P, Saradha M. Effects of Various Solvent on the Extraction of Antimicrobial, Antioxidant Phenolics from the Stem Bark of Decalepis hamiltonii Wight and Arn. Asian J Res Pharm Sci. 2016; 6(2): 129. doi:10.5958/2231-5659.2016.00018.7
19. Mar’ie AM, Zamzani I, Nashihah S. Antibacterial activity of Cassia alata stems ethanol extract against Staphylococcus aureus. Acta Pharm Indones Acta Pharm Indo. 2022; 10(1): 5462. doi:10.20884/1.api.2022.10.1.5462
20. Aldulaimi AK, Idan AH, Radhi AH, et al. GCMS Analysis and Biological Activities of Iraq Zahdi Date Palm Pheonux dactylifera L Volatile Compositions. Reseacrch J Pharm Tech. 2020; 13(11): 5207-5209. doi:10.5958/0974-360X.2020.00910.5
21. S G, Firdous J, A S, et al. Antibacterial action of Pedilanthus tithymaloides leaves extract and FTIR Phytochemical Finger printing. Res J Pharm Technol. Published online April 29, 2021: 2021-2025. doi:10.52711/0974-360X.2021.00358
22. Shriner RL, Hermann CKF, Morrill TC, Curtin DY, Fuson RC. The Systematic Indentification of Organic Compounds.; 2004.
23. Yunusa AK, Rashid ZM, Mat N, et al. Bioactive fingerprints of aqueous extracts of Ficus deltoidea syconia via FTIR spectroscopy coupled with chemometrics. Biosci Res. 2019; 16(1): 157-167.
24. Balamurugan K, Nishanthini A, Mohan VR. GC-MS analysis of Polycarpaea corymbosa (L.) Lam whole plant. Asian Pac J Trop Biomed. 2012; 2(3 SUPPL.): 1289-1292. doi:10.1016/S2221-1691(12)60402-X
25. Pradeepa R. Pharmacognostical and Phytochemical Studies on Leaves of Cinchona officinalis. Res J Pharmacogn Phytochem. 2018; 10(3): 246. doi:10.5958/0975-4385.2018.00040.7
26. Mukim M, Chaturvedi M, Patel R. Pharmacognostical Standardization and Phytochemical Analysis of Chlorophytum borivilianum Santapau and R.R. Fern. Leaves. Res J Pharm Technol. 2022; 15(6): 2402-2406. doi:10.52711/0974-360X.2022.00399
27. Li Z, Teng J, Lyu Y, Hu X, Zhao Y, Wang M. Enhanced antioxidant activity for apple juice fermented with lactobacillus plantarum ATCC14917. Molecules. 2019; 24(1): 1-12. doi:10.3390/molecules24010051
28. Hendra H, Moeljopawiro S, Nuringtyas TR. Antioxidant and antibacterial activities of agarwood (Aquilaria malaccensis Lamk.) leaves. AIP Conf Proc. 2016; 1755. doi:10.1063/1.4958565
29. Yuniarti R, Nadia S, Alamanda A, Zubir M, Syahputra RA, Nizam M. Characterization, Phytochemical Screenings and Antioxidant Activity Test of Kratom Leaf Ethanol Extract (Mitragyna speciosa Korth) Using DPPH Method. J Phys Conf Ser. 2020; 1462(1). doi:10.1088/1742-6596/1462/1/012026
30. Saraswathi K, Sivaraj C, Jenifer A, Dhivya M, Arumugam P. Antioxidant, Antibacterial activities, GCMS and FTIR Analysis of Ethanol bark extract of Capparis sepiaria L. Res J Pharm Technol. 2020; 13(5): 2144. doi:10.5958/0974-360X.2020.00385.6
31. Macáková K, Afonso R, Saso L, Mladěnka P. The influence of alkaloids on oxidative stress and related signaling pathways. Free Radic Biol Med. 2019; 134: 429-444. doi:10.1016/j.freeradbiomed.2019.01.026
32. Yang W, Chen X, Li Y, Guo S, Wang Z, Yu X. Advances in Pharmacological Activities of Terpenoids. Nat Prod Commun. 2020; 15(3): 1934578X2090355. doi:10.1177/1934578X20903555
33. Gayathri V, Nivedha S, Pujita V, Romauld SI. Green synthesis of copper nanoparticles using bracts of Musa paradisiaca (Monthan) and study of its antimicrobial and antioxidant activity. Res J Pharm Technol. 2020; 13(2): 781. doi:10.5958/0974-360X.2020.00147.X
34. Swamy MK, Sinniah UR. A comprehensive review on the phytochemical constituents and pharmacological activities of Pogostemon cablin Benth.: An aromatic medicinal plant of industrial importance. Molecules. 2015; 20(5): 8521-8547. doi:10.3390/molecules20058521
35. Sulaiman M, Jannat K, Nissapatorn V, et al. Antibacterial and Antifungal Alkaloids from Asian Angiosperms: Distribution, Mechanisms of Action, Structure-Activity, and Clinical Potentials. Antibiotics. 2022; 11(9): 1146. doi:10.3390/antibiotics11091146
36. Jihadi NIM, Hashim YZHY, Rahim NA, et al. Antibacterial activity of ethanolic leaf extract of aquilaria malaccensis against multidrug-resistant gram-negative pathogen. Food Res. 2020; 4(6): 1962-1968. doi:10.26656/fr.2017.4(6).205
37. Nuraskin CA, Marlina, Idroes R, Soraya C, Djufri. Identification of Secondary Metabolite using Phytochemical and Infra-Radiation Test on the Leaves of Vitex pinnata found in the Seulawah Agam mountain region of Aceh. Res J Pharm Technol. 2019; 12(11): 5247. doi:10.5958/0974-360X.2019.00907.7
38. Jung HJ, Song YS, Lim CJ, Park EH. Evaluation on pharmacological activities of 2,4-dihydroxybenzaldehyde. Biomol Ther. 2009; 17(3): 263-269. doi:10.4062/biomolther.2009.17.3.263
39. Rangel-Sánchez G, Castro-Mercado E, García-Pineda E. Avocado roots treated with salicylic acid produce phenol-2,4-bis (1,1-dimethylethyl), a compound with antifungal activity. J Plant Physiol. 2014; 171(3-4): 189-198. doi:10.1016/j.jplph.2013.07.004
40. Varsha KK, Devendra L, Shilpa G, Priya S, Pandey A, Nampoothiri KM. 2,4-Di-tert-butyl phenol as the antifungal, antioxidant bioactive purified from a newly isolated Lactococcus sp. Int J Food Microbiol. 2015; 211: 44-50. doi:10.1016/j.ijfoodmicro.2015.06.025
41. Öztürk M. Anticholinesterase and antioxidant activities of Savoury (Satureja thymbra L.) with identified major terpenes of the essential oil. Food Chem. 2012; 134(1): 48-54. doi:10.1016/j.foodchem.2012.02.054
42. Elufioye TO, Obuotor EM, Agbedahunsi JM, Adesanya SA. Anticholinesterase constituents from the leaves of Spondias mombin L. (Anacardiaceae). Biol Targets Ther. 2017; 11: 107-114. doi:10.2147/BTT.S136011
43. Perry NSL, Houghton PJ, Theobald A, Jenner P, Perry EK. In-vitro Inhibition of Human Erythrocyte Acetylcholinesterase by Salvia lavandulaefolia Essential Oil and Constituent Terpenes . J Pharm Pharmacol. 2010; 52(7): 895-902. doi:10.1211/0022357001774598
44. Belakhdar G, Benjouad A, Abdennebi EH. Determination of some bioactive chemical constituents from Thesium humile Vahl. J Mater Environ Sci. 2015;6(10):2778-2783.
45. Akpuaka A, Ekwenchi MM, Dashak DA, Dildar A. Biological activities of characterized isolates of n-hexane extract of Azadirachta indica A.Juss (Neem) leaves. New York Sci J. 2013; 6(16): 119-124.
46. Lorenz HM, Schmitt WH, Tesar V, et al. Treatment of active lupus nephritis with the novel immunosuppressant 15-deoxyspergualin: An open-label dose escalation study. Arthritis Res Ther. 2011; 13(2). doi:10.1186/ar3268
47. Aktas BH, Halperin JA, Wagner G, Chorev M. Inhibition of Translation Initiation as a Novel Paradigm for Cancer Therapy. Vol 46. 1st ed. Elsevier Inc.; 2011. doi:10.1016/B978-0-12-386009-5.00015-1
48. Muthulakshmi A, Jothibai Margret R, Mohan VR. GC-MS analysis of bioactive components of Feronia elephantum Correa (Rutaceae). J Appl Pharm Sci. 2012; 2(2): 69-74.
49. Arsana IN, Juliasih NKA, Widyantari AAASS. GC‒MS Analysis of Bioactive Compounds in Lime Leaf Ethanol Extract (Citrus amblycarpa (Hassk.) Ochse), and Its Potential as a Traditional Medicine Agents. J Penelit Pendidik IPA. 2024; 10(4): 1994-2006. doi:10.29303/jppipa.v10i4.3735
50. Benhniya B, Lakhdar F, Rezzoum N, Etahiri S. GC/MS analysis and antibacterial potential of macroalgae extracts harvested on Moroccan Atlantic coast. Egypt J Chem. 2022; 65(13): 171-179. doi:10.21608/EJCHEM.2022.117053.5301
51. Spanova M, Daum G. Squalene - biochemistry, molecular biology, process biotechnology, and applications. Eur J Lipid Sci Technol. 2011; 113(11): 1299-1320. doi:10.1002/ejlt.201100203
52. Reddy LH, Couvreur P. Squalene: A natural triterpene for use in disease management and therapy. Adv Drug Deliv Rev. 2009; 61(15): 1412-1426. doi:10.1016/j.addr.2009.09.005
53. Albergoni V, Piccinni E, Coppellotti O. Response to heavy metals in organisms-I. Excretion and accumulation of physiological and non physiological metals in Euglena gracilis. Comp Biochem Physiol Part C, Comp. 1980; 67(2): 121-127. doi:10.1016/0306-4492(80)90006-4
54. Ouyang HL, Kong XZ, He W, et al. Effects of five heavy metals at sub-lethal concentrations on the growth and photosynthesis of Chlorella vulgaris. Chinese Sci Bull. 2012; 57(25): 3363-3370. doi:10.1007/s11434-012-5366-x
55. Srivastava R, Mukerjee A, Verma A. GC-MS analysis of phytocomponents in, PET ether fraction of wrightia tinctoria seed. Pharmacogn J. 2015; 7(4): 249-253. doi:10.5530/pj.2015.4.7
56. Karthik Y, Ishwara Kalyani M, Krishnappa S, et al. Antiproliferative activity of antimicrobial peptides and bioactive compounds from the mangrove Glutamicibacter mysorens. Front Microbiol. 2023; 14(February):1-20. doi:10.3389/fmicb.2023.1096826
57. Ruwizhi N, Aderibigbe BA. Cinnamic acid derivatives and their biological efficacy. Int J Mol Sci. 2020; 21(16): 1-36. doi:10.3390/ijms21165712
58. Carballeira NM, Montano N, Vicente J, Rodriguez AD. Novel cyclopropane fatty acids from the phospholipids of the Caribbean sponge Pseudospongosorites suberitoides. Lipids. 2007; 42(6): 519-524. doi:10.1007/s11745-007-3047-3
59. Saleem A, Afzal M, Naveed M, et al. Genes Computationally. Molecules. 2022; 27(23): 1-29. doi:https://doi.org.10.3390/molecules27238512